
SSH GRID superscalar: a tailored
version for clusters

Jorge Ejarque
Rosa M. Badia, Pieter Bellens, Josep M. Perez,

Jesus Labarta, Marc de Palol, Raül Sirvent, Enric Tejedor
Barcelona Supercomputing Center (BSC-CNS)

Technical University of Catalonia (UPC)

May 2007
2

Outline

GRID superscalar overview

SSH version design

MareNostrum Execution Scenarios

Scheduling Policies

Conclusions and Future Work

May 2007
3

GRID superscalar overview

Ease the programming of GRID applications

Basic idea:
L3

 D
ire

ct
or

y/
Co

nt
ro

l

L2 L2 L2

LSU LSUIFU
BXU

IDU IDU

IFU
BXU

FPU FPU

FX
U

FX
UISU ISU

Grid≅

ns seconds/minutes/hours

May 2007
4

GRID superscalar overview

Reduce the development complexity of
Grid applications to the minimum

Writing an application for a computational Grid
may be as easy as writing a sequential
application

Target applications: composed of tasks,
most of them repetitive

Granularity of the tasks of the level of
simulations or programs

May 2007
5

GRID superscalar overview

Three components:
Main program

Subroutines/functions

Interface Definition Language (IDL) file

Programming languages:
C/C++, Perl, Java

Prototype version for shell script

May 2007
6

GRID superscalar overview
GS_On();
for (int i = 0; i < MAXITER; i++) {

newBWd = GenerateRandom();
subst (referenceCFG, newBWd, newCFG);
dimemas (newCFG, traceFile, DimemasOUT);
post (newBWd, DimemasOUT, FinalOUT);
if(i % 3 == 0) Display(FinalOUT);

}
fd = GS_FOpen(FinalOUT, R);
printf("Results file:\n"); present (fd);
GS_FClose(fd);
GS_Off(0);

Master code

Interface Definition Language (IDL) file
In/Out/InOut files or scalars

The functions listed will be executed in a remote server in the Grid.

interface OPT {
void subst(in File referenceCFG, in double latency, in double bandwidth, \

out File newCFG);
void Dimemas(in File cfgFile, in File traceFile, in double goal, out File \

DimemasOUT);
void post(in double bw, in File DimemasOUT, inout File resultFile);
};

May 2007
7

GRID superscalar overview

void dimemas(char *newCFG, char *traceFile, char *DimemasOUT)
{

char command[500];

putenv("DIMEMAS_HOME=/usr/local/cepba-tools");
sprintf(command, "/usr/local/cepba-tools/bin/Dimemas -o %s %s",

DimemasOUT, newCFG);
GS_System(command);

}

Subroutines/functions

void display(char *toplot)
{

char command[500];

sprintf(command, "./display.sh %s", toplot);
GS_System(command);

}

void concat(char *f1, char *f2, char *fout){
FILE *fp;
int i,j,k;

for (i=1; i<1000; i++)
for (j=0; j<1000; j++)

k= j%i;

fp = fopen(fout,"w");
fprintf(fp,"Call to concat(%s, %s, %s)\n", f1, f2, fout);
fclose(fp);

}

May 2007
8

Input/output data

GRID superscalar overview

for (int i = 0; i < MAXITER; i++) {

newBWd = GenerateRandom();

subst (referenceCFG, newBWd, newCFG);

dimemas (newCFG, traceFile, DimemasOUT);

post (newBWd, DimemasOUT, FinalOUT);

if(i % 3 == 0) Display(FinalOUT);

}

fd = GS_Open(FinalOUT, R);

printf("Results file:\n"); present (fd);

GS_Close(fd);

May 2007
9

GRID superscalar overview

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST …

GS_open

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Display

Display

CIRI Grid

May 2007
10

POST
POST

GRID superscalar overview

Subst

DIMEMAS

Subst

DIMEMAS

…

GS_open

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Subst

DIMEMAS

POST

Display

Display

CIRI Grid

May 2007
11

SSH/SCP version design

Motivation
Ease the programming of Grid and cluster
applications

Avoid Grid middleware problems
Difficult to install
Not available in all systems
Reduce the overhead

Why SSH/SCP
SSH and SCP are available in most of modern systems
Robust
Secure

May 2007
12

SSH/SCPSSH/SCP
Worker
scripts

SSH keys

SSH/SCP version design

GRID superscalar applications architecture

User main programUser main program

GRID superscalar
master library

GRID superscalar
master library

Function stubsFunction stubs

Worker main programWorker main program

User functions codeUser functions code

GlobusGlobus
GRAM

GridFTP

GSI
GlobusGlobus

JobManager

Gatekeeper

GSI

GRID superscalar
worker library

GRID superscalar
worker library

M
as

te
r s

id
e

W
or

ke
rs

id
e

SSH/SCPSSH/SCP
Execute
script

SSH keys

SSH GRID superscalar applications architecture

May 2007
13

SSH/SCP version design

The same user interface as in globus version
User code compatible with other versions
No changes are needed

The same code generation tools

Required middleware functionalities substituted by
scripts with ssh/scp calls

Possibility to choose other remote commands (rsh, rcp)
All scripts are auto generated at compile or configuration
time

May 2007
14

SSH/SCP version design

User main programUser main program

Master libraryMaster library

GS Worker LibraryGS Worker Library

Master side
W

or
ke

rs
id

e

WorkerGS

WorkerGS_script

User functions codeUser functions code

Main Thread Callback Thread

Execute_sshExecute_ssh

Submit.sh

Execute(task) Add Node to Task graph,
check dependencies, ..

Callback server

Submit the job or execute
WorkerGS_script directly

Stage-in, execute the worker
binary and stage-out

Callbacks sended by
TCP/IP

SSH conection to
the worker

May 2007
15

SSH version design: gsbuild

app.idlapp.idlapp.capp.c app-
functions.c

app-
functions.c

gsbuildgsbuild

gsstubgenapp-stubs.capp-stubs.c app-worker.capp-worker.c

config_master.shconfig_master.sh config_worker.shconfig_worker.sh

workerGS.shworkerGS.sh

workerGS_script.shworkerGS_script.sh

User files

compile

generate

app-workerapp-worker
appapp

Generated
files

May 2007
16

MareNostrum Execution Scenarios

Deployment tool not needed in clusters
Configuration scripts

Generate the execution and submission script
The user can define:

Remote commands
Queue system
Environment variables (PATH, LIBS, CLASSPATH,…)

Four different execution scenarios
Interactive
Enqueue the whole application
Master interactive, queued workers
Queued master , queued workers

May 2007
17

MareNostrum Execution Scenarios

config_master.shconfig_master.sh

execute_ssh.shexecute_ssh.sh Project cfg
file

config_worker.shconfig_worker.sh Config.worker

Advantages
•Suitable for application debugging

•Fast execution

Drawbacks
•Users’ executions are not isolated

•CPU time limited in interactive nodes

Master configuration

App name

Worker configuration

May 2007
18

MareNostrum Execution Scenarios

config_master.shconfig_master.sh

execute_ssh.shexecute_ssh.sh

LoadLeveler
script

PBS
script

config_worker.shconfig_worker.sh Config.worker

Advantages
•Suitable for production executions

•Suitable for applications with fine
grained tasks

Drawbacks
•All resources allocated during the
whole execution

•Queue overhead at the beginning

•Difficult to allocate large number of
nodes

App name & params, ll/pbs, queue
class, number of processors

Master configuration

Worker configuration

May 2007
19

MareNostrum Execution Scenarios

Queued workers scenarios
Need to add the worker queue class in config_master

Master interactive, queued workers

Isolate the computational jobs (only master in interactive nodes)

Overhead of queuing each task (suitable for applications with coarse
grained tasks)

Master queued, queued workers
Reduces the initial overhead (easy to allocate single slot for the master
only)

Overhead of queuing each task (suitable for applications with coarse
grained tasks)

Resource reuse (not all resources allocated during the whole application)

May 2007
20

Scheduling policies

Time duration estimation
FIFO
Weight graph

May 2007
21

Scheduling policies

Useful for executions in a grid
The classAd library is used to match resource
properties with task requirements
If more than one resources fulfils the
constraint, the resource which minimizes this
formula is selected:

f(t,r) = α FT(r) + β ET(t,r)
t = task
r = resource
FT = File transfer time to resource r
ET = Execution time of task t on resource r (using user provided cost
function)

May 2007
22

Scheduling policies: Cluster

FIFO policy
Do not create overhead

Weight-based policy
Assign a weight for each tasks depending how critical is
this tasks in the graph (number of successors)

Execute first the most critical tasks

May 2007
23

FIFO vs Weight-based
Cholesky decomposition that works in blocks

22 processors

Results
Weight assignment and decision time negligible comparing with the task
duration

Speed up between 1-1.2

Scheduling Policies

May 2007
24

Conclusions and Future work

SSH GRID superscalar
The required middleware functionalities substituted by
script with ssh/scp calls

Relieves from the middleware overhead

Valid paradigm also for cluster applications

Ongoing and Future Work
Fault tolerance mechanisms (currently, task level
checkpointing)

Extend the MareNostrum solution to the Spanish
Supercomputing Network (Red Española de
Supercomputación)

May 2007
25

More information

GRID superscalar home page:
www.bsc.es/grid/grid_superscalar

