CPPC-G:Fault-Tolerant Parallel Applications on the Grid

Daniel Díaz, Xoan Pardo, María J. Martín, Patricia González, Gabriel Rodríguez, Juan Touriño & Ramón Doallo

Grupo de Arquitectura de Computadores
Universidade da Coruña

Contents

- 1. Fault-tolerance in Grid environments
- 2. CPPC
- 3. CPPC-G
 - Overview
 - Services
- 4. Conclusions
- 5. Future work

Fault-tolerance in Grid environments (1)

- Fault-tolerance is a desirable feature for applications
 - It becomes vital for long applications whose time to complete is close to the Mean Time to Failure (MTTF) of the underlying hardware
 - One should take into account the possibility of problems when submitting jobs to remote computing resources...

Fault-tolerance in Grid environments (2)

- One way to achieve fault-tolerance is to perform checkpointing
 - To periodically save the application state in stable storage...
 - ...so that interrupted executions can be restarted from the last saved state

Fault-tolerance in Grid environments (3)

- Checkpointing across the Grid
 - The generated checkpoint files must be portable
 - Able to be used with different architectures and/or operating systems
 - Some mechanism must exist for replicating the checkpoint files in a safe backup place as they are created
 - ...and for moving them to a new machine in the case of a restart

CPPC (1)

- What is CPPC?
 - A checkpointing library for messagepassing parallel applications
 - A compiler that helps the programmer to automate the development of applications that use it

CPPC (2)

CPPC features

- Distributed checkpointing, with compile-time coordination
 - The programmer must indicate "safe points" in the application code at which to take checkpoints
 - All processes in a parallel application take the checkpoints at the same relative locations in the code
 - After a failed execution, a consistent set of checkpoint files is selected, and the execution can be restarted from there

CPPC (3)

- CPPC features (cont.)
 - Only portable application state is saved. Nonportable state is recovered through reexecution
 - Checkpointing performed at the variable level
 - The hardware context of the machine is not saved
 - The checkpoint files are written in a portable format
 - Portability is achieved by using the HDF5 library for storage of scientific data

CPPC-G overview (1)

- What is CPPC-G?
 - A set of Grid Services that handle execution of CPPC applications over the Grid
 - Implemented with the Globus Toolkit 4
 - It's built on top of existing services (WS-GRAM, RFT, MDS) whenever possible

CPPC-G overview (2)

- Why CPPC-G?
 - Existing services allow for remote execution but more functionality is needed
 - Handling of checkpoints
 - Restart capability
 - Automatic resource selection
 - Metaschedulers handle this (at the moment not part of Globus)

CPPC-G overview (3)

- CPPC-G features
 - Automatic selection of Grid computing resources
 - According to a scheduling need supplied by the user
 - Remote execution of CPPC applications
 - Each application is submitted to only one computing resource
 - Parallel processes are not distributed across the Grid, instead they are spawned internally on the computing resource (e.g. MPI applications in a cluster)

CPPC-G overview (4)

- CPPC-G features (cont.)
 - Monitoring of running CPPC applications and detection of failed executions
 - Done by periodically polling the computing resource
 - Periodic replication of generated checkpoint files
 - On a safe backup location
 - Checkpoint metadata is collected

CPPC-G overview (5)

- CPPC-G features (cont.)
 - Restart of failed applications
 - A consistent set of checkpoint files is selected based on the collected metadata
 - Cleanup of checkpoint files
 - Checkpoint files are automatically deleted after they become obsolete
 - When a new consistent set is composed
 - When the application finishes succesfully

CPPC-G overview (6)

- CPPC-G design principles
 - A set of Grid services instead of one or two monolithic services
 - Allows the user to employ only a subset of the system functionality
 - Allows more flexibility to the administrator when deploying the services
 - Trade-off between increased flexibility and the overhead of each new service

CPPC-G overview (7)

- CPPC-G design principles (cont.)
 - User has maximum control over his delegated credentials
 - Services do not re-delegate user credentials unless absolutely neccesary
 - When the computing resource is not known beforehand
 - More secure, but more cumbersome for the user

CPPC-G services (1)

CPPC-G services (2)

CPPC-G services (3)

CPPC-G services (4)

CPPC-G services (5)

CPPC-G services (6)

CPPC-G services (9)

CPPC-G, service by service (12)

Conclusions

- CPPC-G is a set of Grid services that supports the fault-tolerant execution of CPPC applications across the Grid
 - Finds avaliable computing resources according to the user's needs
 - Launches and monitorizes the checkpointed execution of CPPC applications
 - Restarts them in case of failure (possibly in a different computing resource)
 - Modular, flexible and secure architecture

Future Work

- Work in progress, near completion!
- Make the architecture fault-tolerance itself
- More reliable error detection techniques
- Automatic selection of the checkpoint backup site
- Integration with existing metaschedulers

CPPC-G:Fault-Tolerant Parallel Applications on the Grid

Daniel Díaz

ddiaz@udc.es

Grupo de Arquitectura de Computadores

Universidade da Coruña