
CPPC-G:
Fault-Tolerant Parallel

Applications on the Grid

Grupo de Arquitectura de Computadores

Universidade da Coruña

Daniel Díaz, Xoan Pardo, María J. Martín, Patricia González,
Gabriel Rodríguez, Juan Touriño & Ramón Doallo

Contents

1. Fault-tolerance in Grid environments
2. CPPC
3. CPPC-G

• Overview
• Services

4. Conclusions
5. Future work

Fault-tolerance in Grid
environments (1)

• Fault-tolerance is a desirable feature for
applications
– It becomes vital for long applications whose

time to complete is close to the Mean Time to
Failure (MTTF) of the underlying hardware

– One should take into account the possibility of
problems when submitting jobs to remote
computing resources…

Fault-tolerance in Grid
environments (2)

• One way to achieve fault-tolerance is to
perform checkpointing
– To periodically save the application state in

stable storage…
– …so that interrupted executions can be

restarted from the last saved state

Fault-tolerance in Grid
environments (3)

• Checkpointing across the Grid
– The generated checkpoint files must be

portable
• Able to be used with different architectures and/or

operating systems

– Some mechanism must exist for replicating
the checkpoint files in a safe backup place as
they are created
• …and for moving them to a new machine in the

case of a restart

CPPC (1)

• What is CPPC?
– A checkpointing library for message-

passing parallel applications
– A compiler that helps the programmer to

automate the development of
applications that use it

CPPC (2)

• CPPC features
– Distributed checkpointing, with compile-time

coordination
• The programmer must indicate “safe points” in the

application code at which to take checkpoints
• All processes in a parallel application take the

checkpoints at the same relative locations in the
code

• After a failed execution, a consistent set of
checkpoint files is selected, and the execution can
be restarted from there

CPPC (3)

• CPPC features (cont.)
– Only portable application state is saved. Non-

portable state is recovered through re-
execution

– Checkpointing performed at the variable level
• The hardware context of the machine is not saved

– The checkpoint files are written in a portable
format
• Portability is achieved by using the HDF5 library

for storage of scientific data

CPPC-G overview (1)

• What is CPPC-G?
– A set of Grid Services that handle execution

of CPPC applications over the Grid
• Implemented with the Globus Toolkit 4
• It’s built on top of existing services (WS-GRAM,

RFT, MDS) whenever possible

CPPC-G overview (2)

• Why CPPC-G?
– Existing services allow for remote execution

but more functionality is needed
• Handling of checkpoints
• Restart capability
• Automatic resource selection

– Metaschedulers handle this (at the moment not part of
Globus)

CPPC-G overview (3)

• CPPC-G features
– Automatic selection of Grid computing resources

• According to a scheduling need supplied by the user
– Remote execution of CPPC applications

• Each application is submitted to only one computing resource
• Parallel processes are not distributed across the Grid,

instead they are spawned internally on the computing
resource (e.g. MPI applications in a cluster)

CPPC-G overview (4)

• CPPC-G features (cont.)
– Monitoring of running CPPC applications and

detection of failed executions
• Done by periodically polling the computing resource

– Periodic replication of generated checkpoint files
• On a safe backup location
• Checkpoint metadata is collected

CPPC-G overview (5)

• CPPC-G features (cont.)
– Restart of failed applications

• A consistent set of checkpoint files is selected
based on the collected metadata

– Cleanup of checkpoint files
• Checkpoint files are automatically deleted after

they become obsolete
– When a new consistent set is composed
– When the application finishes succesfully

CPPC-G overview (6)

• CPPC-G design principles
– A set of Grid services instead of one or two

monolithic services
• Allows the user to employ only a subset of the

system functionality
• Allows more flexibility to the administrator when

deploying the services
• Trade-off between increased flexibility and the

overhead of each new service

CPPC-G overview (7)

• CPPC-G design principles (cont.)
– User has maximum control over his delegated

credentials
• Services do not re-delegate user credentials

unless absolutely neccesary
– When the computing resource is not known beforehand

• More secure, but more cumbersome for the user

CPPC-G services (1)

CPPC-G services (2)

FaultTolerantJob
• Creates a CkptWarehouse
• Queries SimpleScheduler

for a computing resource
• Invokes CkptJob on the

selected resource

CPPC-G services (3)

FaultTolerantJob (cont.)
• Monitorizes the

checkpointed execution
• If a failure is detected, it

queries SimpleScheduler
for another resource and
starts a new execution

CPPC-G services (4)

CkptWarehouse
• Maintains metadata about

checkpoint files
• Composes consistent sets

of checkpoint files
• Deletes obsolete

checkpoint files

CPPC-G services (5)

SimpleScheduler
• Collects and provides

data about computing
resources hosting
CkptJob services

CPPC-G services (6)

CkptJob
• Manages the checkpointed

execution of CPPC
applications
– On activation, it registers itself

with the SimpleScheduler
– When invoked, it gets the last

consistent set of checkpoint files
from CkptWarehouse

– Submits the CPPC application to
the local job manager

CPPC-G services (9)
StateExport
• Detects, and replicates in a backup

location, generated checkpoint files
• Successfully replicated checkpoints are

registered with CkptWarehouse (via
CkptJob)

CPPC-G, service by service (12)

Conclusions

• CPPC-G is a set of Grid services that
supports the fault-tolerant execution of
CPPC applications across the Grid
– Finds avaliable computing resources

according to the user’s needs
– Launches and monitorizes the checkpointed

execution of CPPC applications
– Restarts them in case of failure (possibly in a

different computing resource)
– Modular, flexible and secure architecture

Future Work

• Work in progress, near completion!
• Make the architecture fault-tolerance itself
• More reliable error detection techniques
• Automatic selection of the checkpoint

backup site
• Integration with existing metaschedulers

CPPC-G:
Fault-Tolerant Parallel

Applications on the Grid

Grupo de Arquitectura de Computadores

Universidade da Coruña

Daniel Díaz
ddiaz@udc.es

