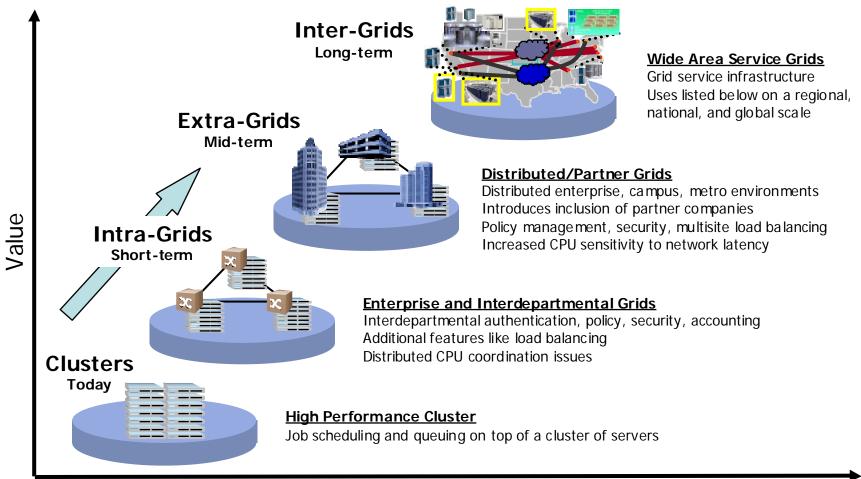
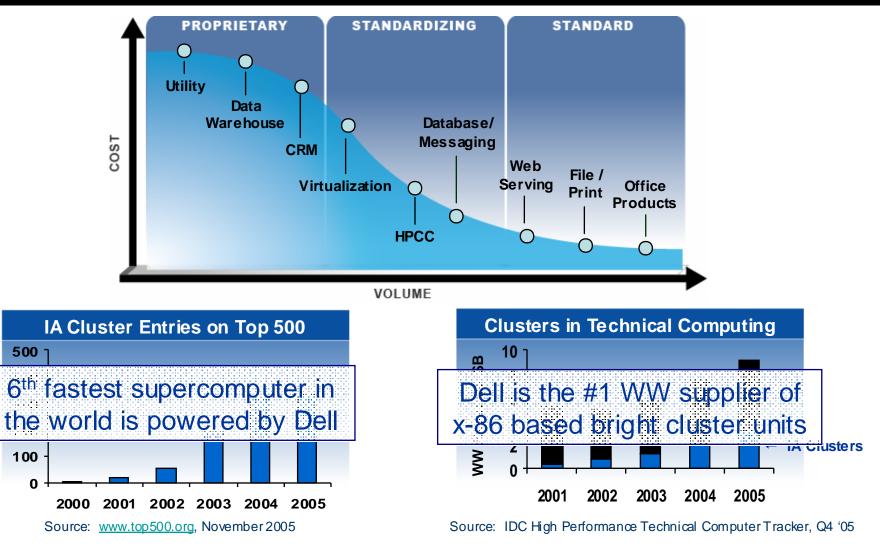


High Performance Computing Clusters

Ibergrid


Miguel Lobato Solutions Spain and Portugal

Santiago de Compostela, May. 14-16, 2007


Evolution of Clustering: Grid Computing

Grid Defined: Aggregation of geographically dispersed computing, storage, and network resources, coordinated to deliver IT services when and where needed.

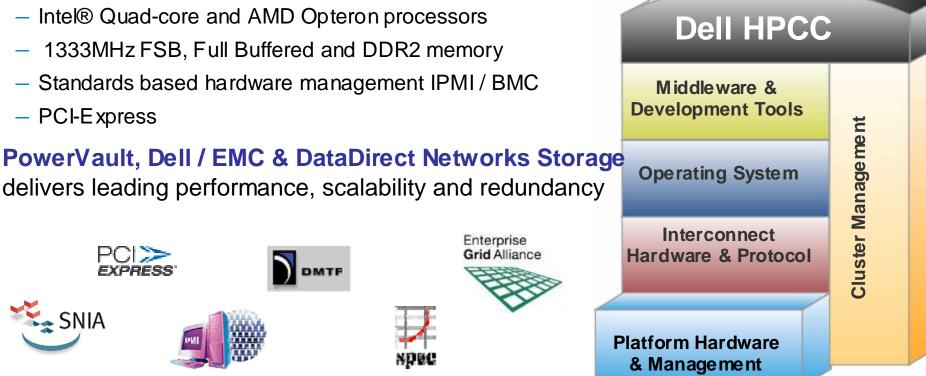
IA HPC Clusters deliver performance & superior value.

Rapid market adoption of industry-standard HPC Clusters

Dell HPCC Solution Stack

Maximize Performance – Minimize Cost & Complexity

Comprehensive Solutions


Industry Standard Building Blocks - Leading Partnerships

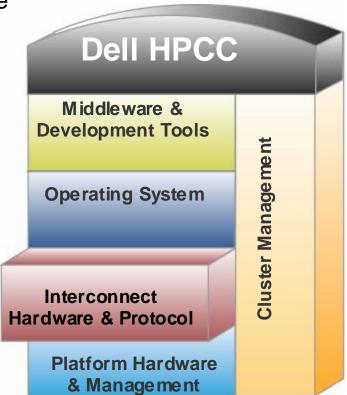
Industry Standard Building Blocks: Servers

PowerEdge Servers leading price / performance & density

- 1U rack and blade form factor
- Intel® Quad-core and AMD Opteron processors
- 1333MHz FSB, Full Buffered and DDR2 memory
- Standards based hardware management IPMI / BMC
- PCI-Express

Blade Compared to Standard Servers

10 x PowerEdge 1950 10 x PowerEdge 1955 10 x PowerEdge 1950 Blades Server Server Energy SmartTypical Power Draw = 2165W Occupies 7U Rack Space • Typical Power Draw = 1681W • Typical Power Draw = 2388W Typical BTU/hr = 7392 Typical BTU/hr = 8152 Typical BTU/hr = 5737 Number of AC cords = 4 with Number of AC cords = 20 with Number of AC cords = 20 with redundancy redundancy redundancy Occupies 10U Rack Space Occupies 10U Rack Space • (******) · (<u>177</u>) 🐡 () – () – () – () – () – () – ()


Power Advantages of PowerEdge 1955 Blade Server to PowerEdge 1950 1U ServerWerEdge 1955 Blade Server consumes 22% less power than similarly configured 1U Energy Smart 1950

Dell Power and thermal results from Dell's Datacenter Capacity Planner (WWW. Dell Connection Calic) January 9, 2007, which is based on SPEcifibre 2005 igured 1U benchmark test i **Standar del 950** Based on a sample server configuration: Dual Intel Xeon 5148 Dual-Core low voltage 2.33Ghz processors 4x1GB 667Mhz RAM 2x SAS 10k hard drive, redundant power, Blade Chassis configuration: 2xEthernet pass-through, redundant management modules, redundant power. Actual performance will vary based on configuration, usage, and manufacturing variability.

Best-of-Breed Partners: Interconnects

Choice of interconnects balances cost & performance*

- Infiniband by Cisco
- Myrinet by Myricom
- Gigabit Ethernet by Dell and Extreme Networks

Throughput: Amount of data that can be sent in one unit of time

- MPI point to point bandwidth (approximate MB/s):

Quadrics QsNet	Infiniband		Myricom	Ethernet				
Elan4	1 x	4 x	12x	Myrinet	Fast	Gig	10Gig	40Gig
911	169	963/893	2025	250	11	110	1100	4400

Latency: Time required to send a small message from application to a remote application

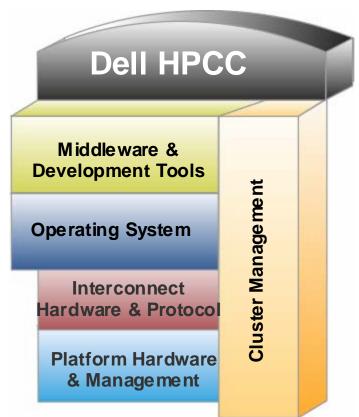
Quadrics QsNet	Infiniband	<i>Myricom</i>	Ethernet		
Elan4		Myrinet	without TOE / with TOE		
1.1µs	4.5-5 µs	5.5 µs	50 μs / 17 μs		

Best-of-Breed Partners: Software Stack

Comprehensive software & management stack

simplifies deployment & management.

- **Red Hat and Suse Linux**
- **Platform Computing**
 - Ganglia & Clumon: management & monitoring
 - Parallel Virtual File System 2
 - Platform Lava and Platform LSF HPC for job scheduling & workload management
 - Message Passing libraries
 - Platform LSF HPC grid-enabled middleware
- Scali Clusters. Management and monitoring
- **Intel** Compilers & performance monitoring tools
- **IBRIX** Scalable cluster file system



* Platform Rocks is based on the NPA CI ROCKS cluster software package developed by the San Diego Supercomputing Center.

Comprehensive Services Portfolio

Speed Time to Production - Streamline Resolution

Plan

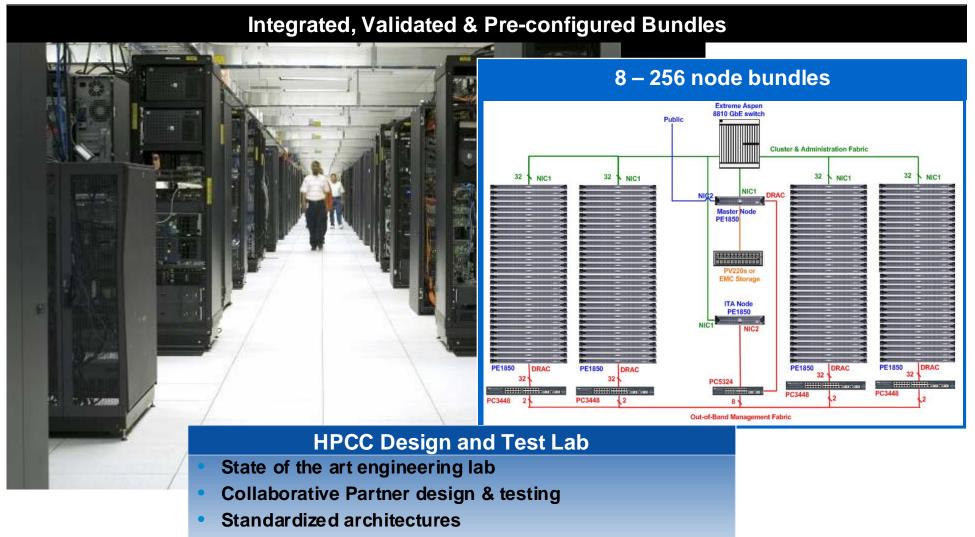
- Design & Solution Validation
- Benchmark Testing Dell & University of Texas Advanced Computing Center (TACC)
- Environmental Assessment

Datacenter Assessment

Implement

- Custom Integration
- Pre-configure, Rack & Ship
- Onsite Deployment & Acceptance Testing
- Technical Training

Custom Factory Integration


Maintain

- Professional Support Services
- Partner collaboration
- Technical Account Management
- Onsite service options

Enterprise Command Center

Design, Deployment & Support Simplified

Technical papers & Best Practices

Dell Top 500 Results

Dell Clusters on Top500.org*

#6 Sandia National Laboratories (NNSA)

11 Maui High Performance Computing Center (MHPCC) 12 Texas Advanced Computing Center (TACC) 27 NCSA 45 BYU 59 NCSA 78 CalTech 87 SUNY 96 University of Sherbrooke 104 University of North Carolina 108 NCSA 123 University of Oklahoma 128 KTH Royal Institute of Technology 166 Imperial College ICT HPC 186 UT SimCenter, Chattanooga 188 CalTech/JPL 406 University of Sherbrooke

Highlights

- **17 systems** on the Top 500 list
- 6th fastest supercomputer in the world
- Industry Standard leadership
 Intel EM64T
 - •Gigabit Ethernet
 - Infiniband
 - •Myrinet

Brigham Young University

expands supercomputing resources with MaryLou 4

Challenge:

- Increase computational capacity
- Strict heat, space & power restrictions
- Limited technology staff

Solution:

- 630 PowerEdge[™] 1855 blade servers, each with dual Intel[®] Xeon[™] EM64T 3.6GHz processors
- Red Hat® Linux® operating system
- Platform Computing LSF Rock
- Cisco InfiniBand® interconnect, 10
 Gigabit Ethernet interface & Force 10
 network switches
- Data Direct Networks storage

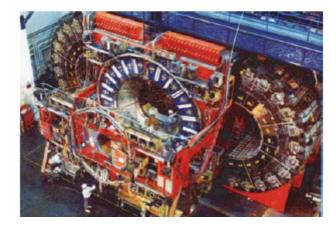
Benefits:

- Exceptional computational performance within its heat, space and power parameters
- Enables students and faculty in both the graduate and undergraduate programs to forge ground-breaking research

"We needed as much computing power as possible with the lowest heat profile. Our primary goal was the biggest bang for BTU of heat generation." -David Stirling

Supercomputing Administrator BYU Supercomputing Laboratory August 2005

45th fastest supercomputer worldwide* Top 500- Nov 2006


Oxford University: Scientific Research

- Oxford University is one the UK's and the world's leading education and research establishments.
- Uses Dell cluster for high energy physics research
- Oxford uses HPCC to speed UK-based research on data obtained from experiments conducted on the Fermilab accelerator in the US,
- Serviced by Dell/Scali partnership
- Research centre deploys four HPCC clusters across the UK, each consisting of Dell PowerEdge 2650 servers and PowerVault 220S storage

Collider Detector Facility (CDF) located at the collision point between protons and antiprotons in Fermi National Accelerator Laboratory's Tevatron accelerator.

Spain Case Studies: CESGA

SVG – Superordenador Virtual Galego

CESGA

- 80 servers 1U DELL 750 P4 3.2GHz, 112Gb RAM. 512 GFlops
- 36 servers Blade DELL 1955 Quad Core Intel, 148Gb RAM. 2.227GFlops -15,3 Tb Scratch Paralel Storage
- MONITOR SISTEMAS DE CÁLCULO Nome Sistema CPUs GFlops Pico Memoria Gbytes Disco Gbytes Carga Traballos Execución 25 SC Compag HPC320 32 64 80 2000 93 % 100 SUPERDOME Cluster SUPERDOME 128 768 384 7168 100 % 123 SVGD Cluster SVG 391 2371 273 16032 43 %

Other references

Gracias Obrigado Thank you

miguel_lobato@dell.com

www.dell.com/hpcc

Santiago de Compostela, May. 14-16, 2007