Management of a Grid Infrastructure in gLite with Virtualization

Miguel Cardenas Montes Javier Perez-Griffo Callejon Raul Ramos Pollan Manuel Rubio del Solar Ibergrid 2007 Santiago Compostela / 16 of May 2007

Management of a Grid Infrastructure in gLite with Virtualization

Santiago Compostela - 16/05/2007 CENTRO EXTREMEÑO DE TECNOLOGÍAS AVANZADAS

- Complexity of a gLite Site
- Classification of gLite Services
- Possibilities for virtualization in gLite
- Virtualization performance in XEN
- XEN with gLite
- CETA-XEN
- Conclusion

Complexity of a gLite Site

- Complexity of a site is proportional to the number and nature of the services that compose it.
- Difficult to rapidly deploy new gLite sites.
- Many of the tasks of keeping up-to date a site are repetitive and can be automatized.

Virtualization can simplify gLite sites management

Classification of gLite Services

- Cluster Services (WN)
 - Its complexity relies in keeping up-to date the software installed
 - Constitute the majority of the site
 - Configuration is not tied to FQDN
- Basic Services (CE,SE,Site BDII)
 - Strong dependency to core services
 - Installation can be automated with yaim
- Core Servicies (RB, LFC, BDII,)

Possibilities for virtualization in gLite

- Cluster Services (WN)
 - Usage of configure once and clone many
- Basic Services (CE,SE,Site BDII)
 - Clonage of image with the service pakages
 - Configuration done automatically when image is instantiated
- Core Servicies (RB, LFC, BDII,)
 - Snapshots

XEN Performance

- Base System
 - AMD Opteron Model 270 at 2.0 GHz (Dual-Core) with 4GB Ram (NO VT)
 - Dom 0: Linux Dapper with Xen 3.14 (32 Bits)
- Benchmarks Used
 - , FLOPS

 - BYTEMarks (Numeric Sort, Fourier, IDEA, etc..)
- Scenarios
 - Basic Scenario: Scientific Linux 3 with 2 Virtual CPU's
 - Lvm Scenario: Scientific Linux 3 with LVM driver
 - Pin Scenario: Scientific Linux 3 with 2 CPU's

Xen Performance - Basic Scenario

8,2% Cpu Loss 38,6% IO Loss 21,1% BYTEMark Loss

Xen Performance - Basic Scenario

Base System CPU: 2 Dual Core Arch: AMD Memory: 4 G SO: Scientific Linux 3 Kernel: 2.6	Virtual System CPU: 2 Memory: 2 G SO: Scientific Linux 3 Kernel: 2.6 VCPU: virtual Disk: image	Virtual System CPU: 2 Memory: 2 G SO: Scientific Linux 3 Kernel: 2.6 VCPU: virtual Disk: image
	Ubuntu Dapper	dom0
		hardware

18,3% Cpu Loss in each virtual system
49,3% IO Loss in each virtual system
22,5% BYTEMark Loss in each virtual system

Xen Performance - LVM Scenario

18,6% Cpu Loss in each virtual system46,4% IO Loss in each virtual system22,5% BYTEMark Loss in each virtual system

Xen Performance - PIN Scenario

17,6% Cpu Loss in each virtual system43,8% IO Loss in each virtual system22,1% BYTEMark Loss in each virtual system

XEN Performance - Observation

- Strong Penalization for reading
- Direct drivers into file system only give 3% gain
- Direct cpu give a 5% gain in IO operations
- CPU performance can be outweighed against manageability.
- IO performance of LVM is not significant an can be discarded for simplicity.
- CPU pinning is recommend as improves globally the virtual hosts.

Xen for gLite

- Virtualizable Components:
 - All but....
- We recommend not to virtualize:
 - LFC
 - > SE
- Worker Nodes depend on the profile of the application.

CETA-XEN

Enviroment created for the **resource provisioning** of virtual images within a homogenized enviroment. For the creation of **isolated** environments

Features:

- •Usage of FQDN as identifier of the virtual host.
 - •FQDN to MAC address
- Rapid Cloning deployment
- •Easy Snapshoting of virtual images.
- Easy deployment of environment
- •Easy Architecture

CETA-XEN

INISTERIO

EDUCACIÓN CIENCIA

Concluding Remarks

- Virtualization can simplify many of the tasks of maintenance of gLite site.
 - Snapshots of Services
 - Cloning of Environments
 - Rapid Deployment of new Environments
- Virtualization in XEN is not recommend for IO intensive services.

Q&A

Thank You for your attention

Management of a Grid Infrastructure in gLite with Virtualization

Santiago Compostela - 16/05/2007 CENTRO EXTREMEÑO DE TECNOLOGÍAS AVANZADAS