

IberGrid 07, Santiago de Compostela, May 15th 2007

Multi-voxel non-linear fMRI analysis: a Grid computing approach

Rodolfo Andrade, I. Oliveira, J. M. Fernandes, J. P. Cunha IEETA / Universidade de Aveiro

www.ieeta.pt/sias | randrade@ieee.org

Outline

- Background concepts on fMRI
- Why a non-parametric approach
- Grid-enabled solution concept
- Experiments and early results

IEETA at a glance

- IEETA is one of the 17 Research Units at Universidade de Aveiro (~12,500 students)
- Selected keywords
 - ▶ information systems, computer systems, electronics, telematics, signal processing,...
- Healthcare informatics is one of the main areas
 - medical images, biosignals, telemedicine,
 multimodal brain studies, neuroinformatics, etc.

Functional MRI imaging

- fMRI allow us to study brain function
- Generates a great quantity of images
 - ▶ e.g. 1 volume every 3s during 5 minutes

fMRI analysis: parametric vs non-parametric

Parametric analysis

- based on accepted assumptions
- Non-parametric analysis
 - hypothesis depend on relating spatial areas with relevant occurring events
- Non-parametric analysis advantages
 - ▶ No model is assumed
 - ► Find voxels that have similar "behaviour" along time – pair wise analysis
 - Nonlinear approach, namely association measures to identify "similar" voxels

Source of images: Jody Culham's fMRI for newbies web site

fMRI analysis: voxel pair wise analysis

- One voxel association analysis with all the others
 - associations association results considering delayociation results ▶ 64 x 64 x 16 (voxels in a fMRI volume) possible associations
 - ► The result is one volume with 64
- With all the voxels
 - 16) possible associations
 - ► The resultare 64 x 64 x 16 volumes, each with 64 x 64 x 16 association results

"Grid opportunity" for non-parametric fMRI analysis

- New opportunities for brain imaging research
 - ► Large-scale, distributed data management
 - Complex analysis (processing)
 - ➤ Workflows (e.g.: pre-processing, analysis and integration, post-processing)
- fMRI voxel pair wise analysis
 - processing time is limitative (about 5h30 in a normal workstation for a single voxel)
- Previous work in association analysis of biosignals using non linear methods¹

¹ J. P. Cunha and P. G. de Oliveira. A new and fast nonlinear method for association analysis of biosignals. IEEE Trans. Biomed. Eng., 47(6):757–63, 2000.

Solution concept

- Natural parallelization of the analysis
 - ► Pair wise analysis allows the creation of N independent jobs
- Grid "pluses"
 - Natural scalability: can evolve this approach
 - Access to high throughput computation
 - Access control/authorization provisions (medical data!)
- Approach: a framework to interact with the Grid services and allow a researcher to run fMRI analysis through a simple interface

Architecture

Job Submission workflow

BlmageG Implementation

- Integration in the Pre-Production testbed of EGEE
 - ► IEETA-PPS: 2 Worker Nodes, 1 Computing Element, 1 User interface, 1 Storage Element and 1 MON
 - Implemented in virtual hosts using Xen
- Task Manager uses gLite APIs and CLIs to submit and monitor jobs.
- Currently using WMProxy for job submission
- Job parallelization accomplish by Direct Acyclic Graph (DAG) jobs.
- The Data Manager is being developed

Direct Acyclic Graph

Early Results

User portal

- allows a user to run association analysis, monitor the state of his tasks and manage them.
- ► Each analysis interface is defined in a XML file.

Early Results

Pair-wise association results

► Computing time reduced from 5h30 to approximately 47m

Slice #8 Voxel 45,39

Slice #8

Slice #10

Slice #12

Future work

- User authentication
- Improve data management
 - ➤ Continue the development of the DataManager
 - ► Test integration with Medical Data Manager Services
 - Anonymization issues
 - Integration with DICOM servers
- Extend the pair-wise analysis (all brain)
- Migrate to EGEE Production

Summary

- Non-parametric analysis time can be substantially reduced using Grid resources
- Pair-wise analysis is ideal to Grid computing because it can be easily parallelised
- Towards a virtual lab

IberGrid 07, Santiago de Compostela, May 15th 2007

Multi-voxel non-linear fMRI analysis: a Grid computing approach

Rodolfo Andrade, I. Oliveira, J. M. Fernandes, J. P. Cunha IEETA / Universidade de Aveiro

www.ieeta.pt/sias | randrade@ieee.org

fMRI

- The fMRI analysis can be parametric or non parametric
 - Parametric analysis
 - A model is assumed for a signal associated to a given event/brain function
 - Which are the voxels that "correlate" with this model
 - Statistics are used to see how well the voxels fit the model → associate brain areas
 - ▶ Non parametric analysis
 - No model is assumed
 - Find voxels that have similar "behaviour" along time – pair wise analysis
 - Nonlinear approach, namely association measures to identify "similar" voxels

Source of images: Jody Culham's fMRI FOR NEWBIES web site