**1ST IBERIAN GRID INFRASTRUCTURE CONFERENCE** 14-16 May 2007, Santiago de Compostela, Spain <u>www.ibergrid.eu</u>



# D-Grid in International Context Lessons Learned and Recommendations

Wolfgang Gentzsch D-Grid, RENCI, OGF, e-IRG, Duke

with support from Tony Hey, Stephen Newhouse, et al, Satoshi Matsuoka, Kazushige Saga, Hai Jin, Bob Jones, Charlie Catlett, Dane Skow, D-Grid Team, and the Renaissance Computing Institute at UNC Chapel Hill, North Carolina





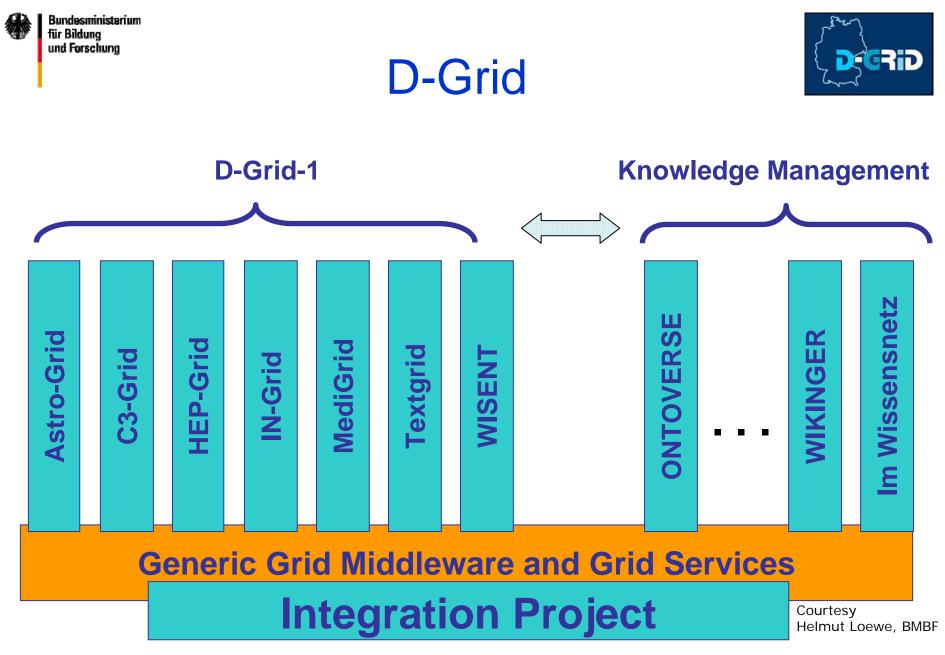


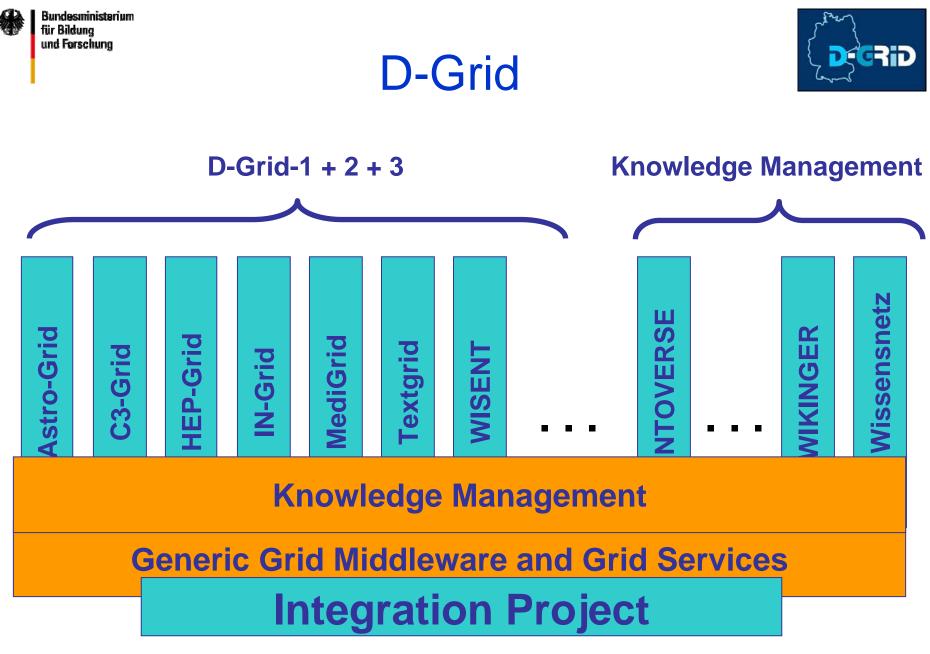
# **Today's Topics**

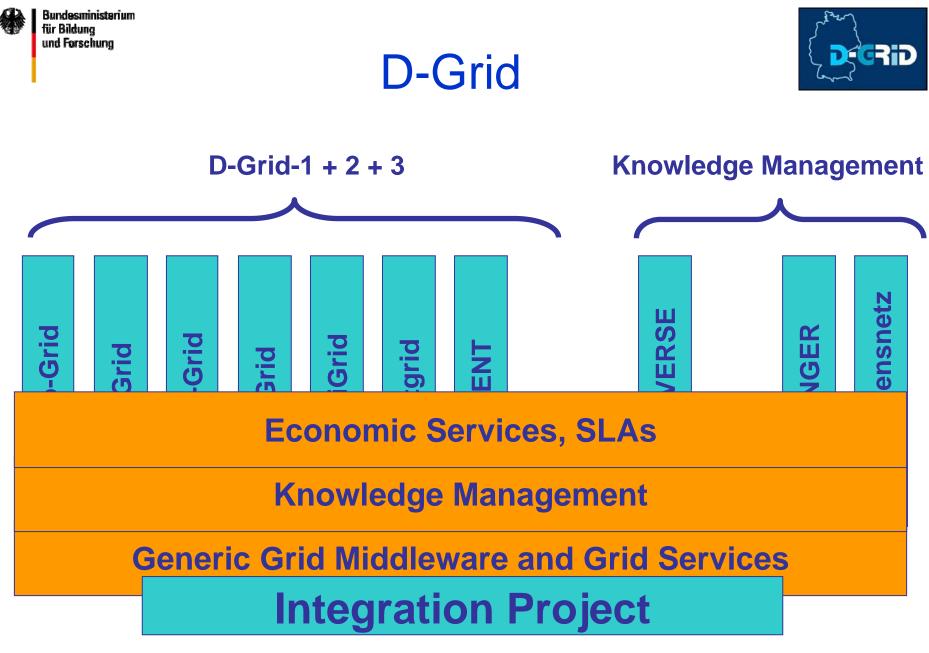


- ➤ Let me start with D-Grid
- Examples of e-Science grid projects and their Key Objectives
- Components of an e-Science infrastructure and Grid middleware
- Challenges for research and industry
- Sustainability of e-Infrastructures
- ➢ e-Science applications
- > Attracting and integrating new Grid Communities
- Lessons learned and recommendations

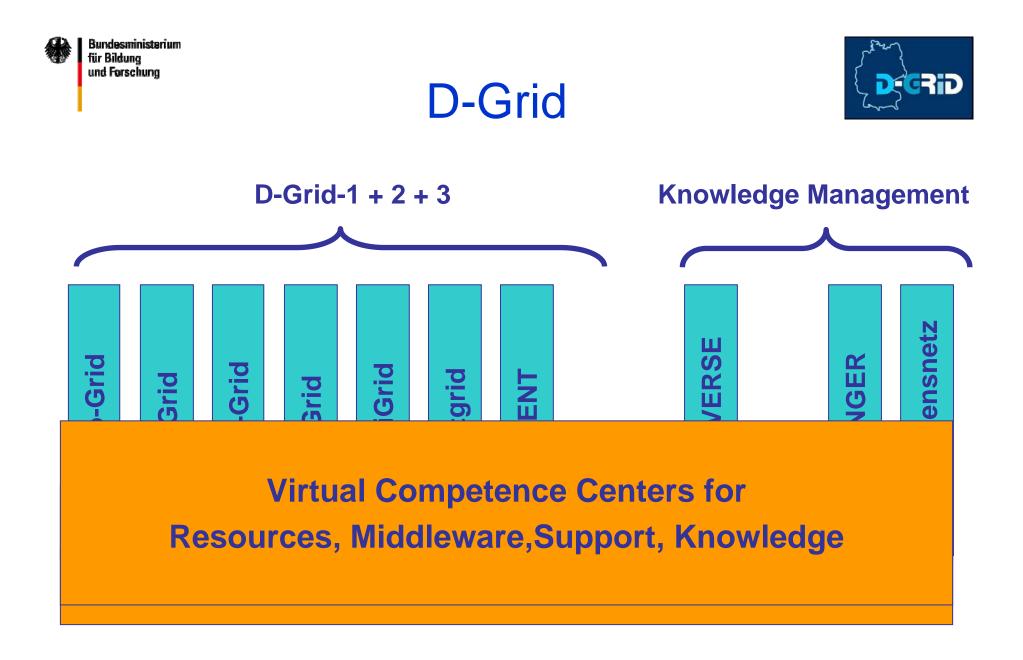
# D-Grid at a Glance





# Building a National e-Infrastructure for Research and Industry


- 01/2003: Pre-D-Grid Working Groups → Recommendation to Government
- 09/2005: D-Grid-1: early adopters, 'Services for Science'
- 01/2007: D-Grid-2: new communities, 'Service Grids'
- 01/2008: D-Grid-3: Service Grids for research and industry
- D-Grid-1: 25 MEuro > 100 Orgs > 200 researchers
- D-Grid-2: 25 MEuro > 50 addl Orgs > 200 addl researchers
- D-Grid-3: Call in May 2007

# > Important:


- Sustainable production grid infrastructure after the end of the funding
- Integration of <u>new communities</u>
- Evaluating <u>business models</u> for grid services







IberGrid 2007



# **Core D-Grid**



# **Objective:**

- establishment and operation of the Core D-Grid infrastructure by the D-Grid integration project (DGI)
- evaluation of interoperability and performance of resources

### The Core D-Grid comprises:

- Acquisition and integration of compute and storage resources
- Implementation and provision of middleware (Globus, gLite, UNICORE)
- Attachment of storage robots to the storage element of the D-Grid software (dCache, SRM/SRB)
- Admission of users to resources and applications (AA)
- Operation of a virtual Grid Operating Center (GOC)





Additional 5.3 Mio Euro Investment in D-Grid Hardware in December 2006

- Each resource with full middleware stack (GT4, gLite, UNICORE)
- Storage systems accessible through DGI tools (dCache, SRB, OGSA-DAI,...)
- Resources should be available for ALL communities (DGrid1 and DGrid2)
- Sustainability at least until the end of resource life cycle
- Different resources from different grid communities in one location have to be consolidated

# GOC, German Core Grid sites, Phase



|                      | Site               | Resource                                                                                                                                                   | Amount                           |
|----------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                      | FZJ/ZAM            | IBM Supercomputer with 8,5 TFlops<br>STK data robot system with 2,8 PByte                                                                                  | 32 CPUs<br>300 TByte             |
| RRZN                 | FZK/IWR            | 8 nodes Opteron 2x2.2 GHz<br>8 processors of a system NEC SX-5<br>1 p630 with 4 processors<br>1 SX-6i to do tests<br>2 nodes Opteron 2x2.2 GHz to do tests | 100%<br>50%<br>50%<br>50%<br>50% |
| PC <sup>2</sup>      | LRZ                | SGI high performance system with 20 TFlop/s<br>Intel IA32 and IA 64 Cluster,<br>IBM p690, SunFire 80                                                       | 5 5%<br>5%<br>5%                 |
| FZJ                  | MPI / RZG          | IBM supercomputer with 4,5 TFlops,<br>PC cluster with 2 TFlops<br>Data robot system with 8 PByte                                                           | 32 CPUs<br>400 TByte             |
| RWTH<br>FHG/<br>ITWM | PC <sup>2</sup>    | Cluster of 400 Xeon 64 Bit processors, high performance visualization and FPGAs                                                                            | 10%                              |
| Uni-KA               | RWTH/RZ            | 2 SunFire 6900 with 24 UltraSPARC IV each                                                                                                                  | 100%                             |
| FZK                  | TU-<br>Dresden/ZIH | SGI O2K(56 proc)/O3K(192 proc.) :<br>T3E (64 proc):<br>PC cluster with 30 processors,<br>end off 2005: new system with 1000 proc.                          | 10%<br>20%<br>20%<br>2%          |
|                      | Uni-H/RRZN         | PC-Cluster mit 64 CPUs                                                                                                                                     | assoc.                           |
|                      | Uni-KA             | PC-Pool                                                                                                                                                    | assoc.                           |
|                      | FHG/ITWM           |                                                                                                                                                            | assoc.                           |

# GOC, German Core Grid sites, Phase



| Institution  |   | Gesamt | / | Backbone |   | AstroGridD | C3-Grid | HEP | InGrid | MediGRID | TextGrid | MISNE |
|--------------|---|--------|---|----------|---|------------|---------|-----|--------|----------|----------|-------|
|              | / | 0      | / |          | / | <u> </u>   | / 0     |     |        | / ~      | /        |       |
| FZK          |   | 480    |   | 480      |   |            |         |     |        |          |          |       |
| FZJ          |   | 380    |   | 380      |   |            |         |     |        |          |          |       |
| DESY         |   | 380    |   | 380      |   |            |         |     |        |          |          |       |
| RRZN         |   | 380    |   | 380      |   |            |         |     |        |          |          |       |
| ZIB          |   | 450    |   | 380      |   |            | 70      |     |        |          |          |       |
| LRZ          |   | 380    |   | 380      |   |            |         |     |        |          |          |       |
| HLRS         |   | 480    |   | 380      |   |            |         |     | 100    |          |          |       |
| ZIH/TUD      |   | 380    |   | 280      |   |            |         |     |        | 100      |          |       |
| FhG SCAI     |   | 200    |   | 100      |   |            |         |     | 100    |          |          |       |
|              |   |        |   |          |   |            |         |     |        |          |          |       |
| AIP/AEI      |   | 150    |   |          |   | 150        |         |     |        |          |          |       |
| MPA/MPE      |   | 150    |   |          |   | 150        |         |     |        |          |          |       |
| ZAH          |   | 150    |   |          |   | 150        |         |     |        |          |          |       |
| WDC Clim.    |   | 100    |   |          |   |            | 100     |     |        |          |          |       |
| Uni Köln     |   | 70     |   |          |   |            | 70      |     |        |          |          |       |
| Uni Do.      |   | 150    |   |          |   |            | 70      | 80  |        |          |          |       |
| LMU          |   | 100    |   |          |   |            |         | 100 |        |          |          |       |
| Uni Freiburg |   | 100    |   |          |   |            |         | 100 |        |          |          |       |
| Uni Wup.     |   | 100    |   |          |   |            |         | 100 |        |          |          |       |
| GSI          |   | 50     |   |          |   |            |         | 50  |        |          |          |       |
| Uni Marburg  |   | 100    |   |          |   |            |         |     | 100    |          |          |       |
| Uni Siegen   |   | 100    |   |          |   |            |         |     | 100    |          |          |       |
| Fhg IAO      |   | 30     |   |          |   |            |         |     |        | 30       |          |       |
| GWDG         |   | 270    |   |          |   |            |         |     |        | 170      | 100      |       |
| OFFIS        |   | 190    |   |          |   |            |         |     |        |          |          | 1     |
| DLR-DFD      |   | 50     |   |          |   |            |         |     |        |          |          |       |
| Cocorrt      |   | E070   |   | 0140     |   | 450        | 040     | 400 | 400    |          | 400      |       |
| Gesamt:      |   | 5370   |   | 3140     |   | 450        | 310     | 430 | 400    | 300      | 100      | 2     |
|              |   |        |   |          |   |            |         |     |        |          |          |       |

IberGrid

# Core D-Grid Infrastructure



- 8 DGI Centers to build the resource and service backbone for all communities, plus 17 local resources
- All centers are responsible for a reliable and sustainable grid operation
- Backbone resources are available for all communities exclusively for grid-related activities
- Each Grid Community is building a community resource infrastructure with similar quality and services
- FZK in Karlsruhe provides supervision, coordination, monitoring as part of this 2-tier architecture



- Sustainable grid operation environment with a set of core D-Grid middleware services for all grid communities
- Central registration and information management for all resources
- Packaged middleware components for gLite, Globus and Unicore and for data management systems SRB, dCache and OGSA-DAI
- D-Grid support infrastructure for new communities with installation and integration of new grid resources into D-Grid Help-Desk, Monitoring System and central Information Portal



- Tools for managing VOs based on VOMS and Shibboleth
- Test implementation for Monitoring & Accounting for Grid resources, and first concept for a billing system
- Network and security support for Communities (firewalls in grids, alternative network protocols,...)
- DGI operates "Registration Authorities", with internationally accepted Grid certificates of DFN & GridKa Karlsruhe
- Partners support new D-Grid members with building their own "Registration Authorities"



- DGI will offer resources to other Communities, with access via gLite, Globus Toolkit 4, and UNICORE
- Portal-Framework Gridsphere can be used by future users as a graphical user interface
- For administration and management of large scientific datasets, DGI will offer dCache for testing
- New users can use the D-Grid resources of the core grid infrastructure upon request



# **Components of e-Science Infrastructures**

- 1. Resources: Networks with computing and data nodes, etc.
- 2. Development/support of standard middleware & grid services
- 3. Internationally agreed AAA infrastructure
- 4. Discovery services and collaborative tools
- 5. Data provenance, curation and preservation
- 6. Open access to data and publications via interoperable repositories
- 7. Remote access to large-scale facilities: Telescopes, LHC, ITER, ..
- 8. Industrial collaboration

| e-Sciel<br>Initiative | nce Grid I  | nitiatives I<br>Funding | nvestigate<br>People *) |           |
|-----------------------|-------------|-------------------------|-------------------------|-----------|
| UK e-Science-I:       |             | \$180M                  | 900                     | Res.      |
| UK e-Science-II:      |             | \$220M                  | 1100                    | Res. Ind. |
| TeraGrid-I:           | 2001 - 2004 | \$90M                   | 500                     | Res.      |
| TeraGrid-II:          | 2005 - 2010 | \$150M                  | 850                     | Res.      |
| ChinaGrid-I:          | 2003 - 2006 | 20M RMB                 | 400                     | Res.      |
| ChinaGrid-II:         | 2007 – 2010 | 50M RMB *)              | 1000                    | Res.      |
| NAREGI-I:             | 2003 - 2005 | \$25M                   | 150                     | Res.      |
| NAREGI-II             | 2006 - 2010 | \$40M *)                | 250                     | Res. Ind. |
| EGEE-I:               | 2004 - 2006 | \$40M                   | 800                     | Res.      |
| EGEE-II:              | 2006 - 2008 | \$45M                   | 1000                    | Res. Ind. |
| D-Grid-I:             | 2005 - 2008 | \$25M                   | 220                     | Res.      |
| D-Grid-II:            | 2007 - 2009 | \$25M                   | 220 (= 440)             | Res. Ind. |

# Main Objectives of e-Science Projects



### **UK e-Science:**

To enable the next generation of multi-disciplinary collaborative science and engineering, to enable faster, better or different research.

### EGEE:

To provide a seamless Grid infrastructure for e-Science that is available for scientists 24 hours-a-day.

### ChinaGrid:

To provide a research and education platform by using grid technology for the faculties and students among the major universities in China.

### NAREGI:

To do research, development and deployment of science grid middleware.

### TeraGrid:

Create a unified Cyberinfrastructure supporting a broad array of US science activities using the suite of NSF HPC facilities

## **D-Grid:**

Build and operate a sustainable grid service infrastructure for German research (D-Grid1) and research and industry (D-Grid2)

# Main Objectives of e-Science Projects



#### **UK e-Science:**

To enable the next generation of multi-disciplinary collaborative science and engineering, to enable faster, better or different research.

### EGEE:

To provide a seamless Grid infrastructure for e-Science that is available for scientists 24 hours-a-day.

### **ChinaGrid:**

To provide a research and education platform by using grid technology for the faculties and students among the major universities in China.

### NAREGI:

To do research, development and deployment of science grid middleware.

### **TeraGrid**:

Create a unified Cyberinfrastructure supporting a broad array of US science activities using the suite of NSF HPC facilities

### **D-Grid:**

Build and operate a sustainable grid service infrastructure for German research (D-Grid1) and research and industry (D-Grid2)

# Grid Middleware Stacks, major modules



#### UK e-Science:

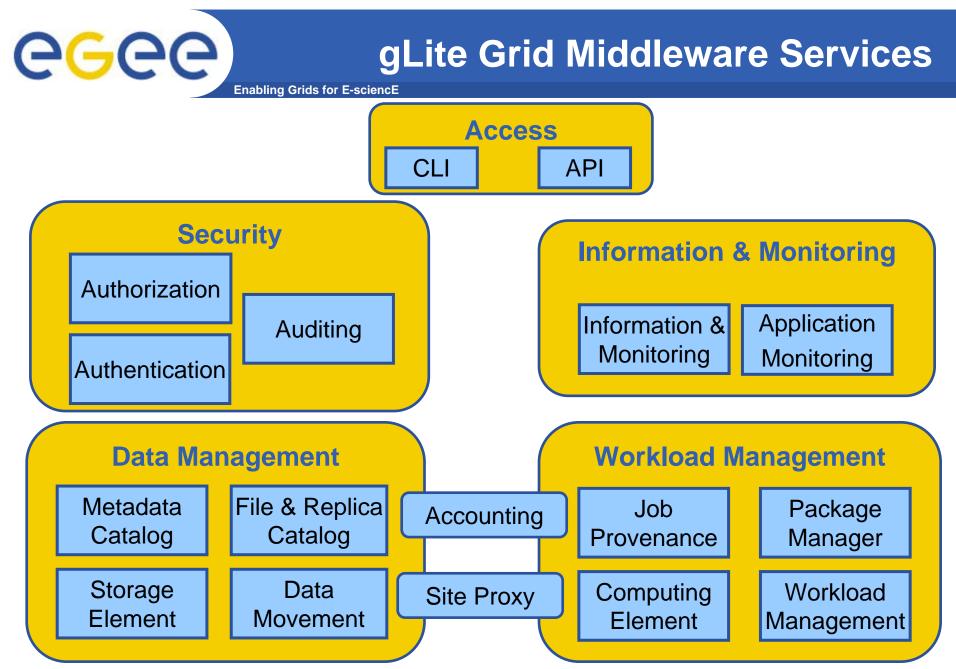
Phase 1: Globus 2.4.3, Condor, SRB. Phase 2: Globus 3.9.5 und 4.0.1, OGSA-DAI, Web services.

### EGEE:

gLite distribution: elements of Condor, Globus 2.4.3 (via Virtual Data Toolkit).

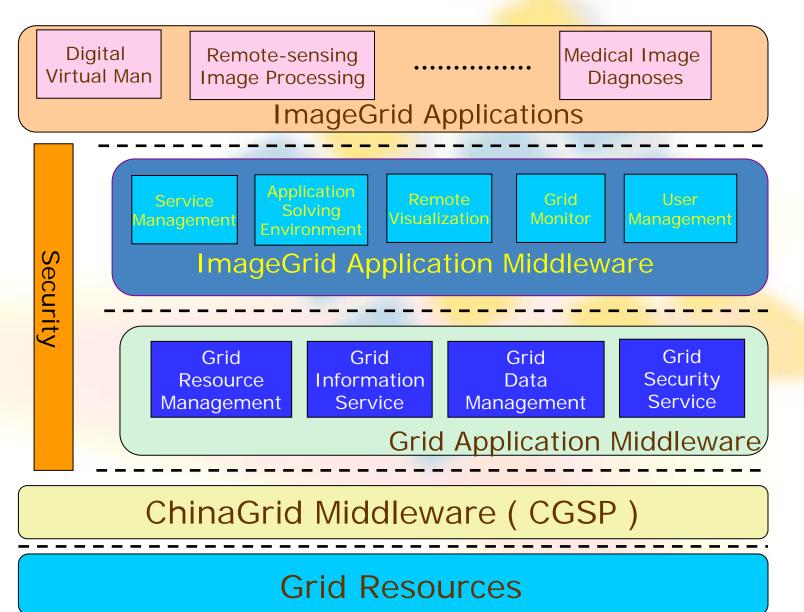
### **ChinaGrid:**

ChinaGrid Supporting Platform (CGSP) 1.0 is based on Globus 3.9.1, and CGSP 2.0 is implemented based on Globus 4.0.


**NAREGI:** NAREGI middleware and Globus 4.0.1 GSI and WS-GRAM

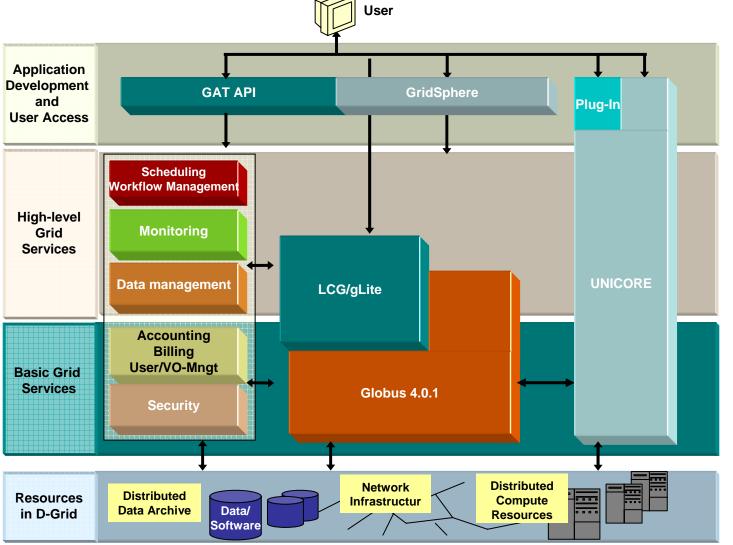
#### **TeraGrid**:

GT 2.4. and 4.0.1: Globus GRAM, MDS for information, GridFTP & TGCP file transfer, RLS for data replication support, MyProxy for credential mgmnt


### **D-Grid:**

Globus 4.0.3, Unicore 5, gLite (GT 2.4.3), dCache, SRB, OGSA-DAI, GridSphere, GAT, VOMS and Shibboleth




Overview paper http://doc.cern.ch//archive/electronic/egee/tr/egee-tr-2006-001.pdf





# **D-Grid Middleware**





# **Sustainability**



### **UK e-Science:**

National Grid Service (NGS), Grid Operations Support Center (GOSC),

National e-Science Center (NeSC), Regional e-Science Centers,

Open Middleware Infrastructure Institute (OMII), Digital Curation Center (DCC) **EGEE:** 

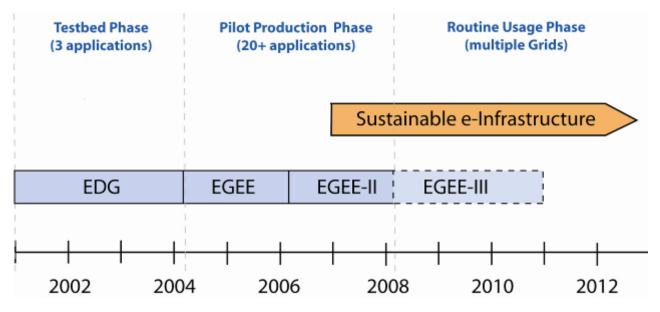
Plans to support a European Grid Initiative (EGI), together with NGIs, to provide persistent grid service federating national grid programmes starting in late 2007 **ChinaGrid:** 

Increasing numbers of grid applications using CGSP grid middleware packages **NAREGI**:

Software will be managed and maintained by Cyber Science Infrastructure Center of the National Institute of Informatics

### TeraGrid:

5-year Agreement with NSF Cyberinfrastructure Office. Partnerships with peer grid efforts and commercial web services activities in order to integrate broadly. Science Gateways.


## **D-Grid:**

DGI WP 4: Long-term funding, WP Sustainability, economic models, service centers



Enabling Grids for E-sciencE

- Need to prepare for permanent Grid infrastructure
  - Maintain Europe's leading position in global science Grids
  - Ensure a reliable and adaptive support for all sciences
  - Independent of short project funding cycles
  - Modelled on success of GÉANT
    - Infrastructure managed in collaboration with national grid initiatives



# D-Grid: Towards a Sustainable Infrastructure for Science and Industry



- Govt is changing <u>policies</u> for resource acquisition (HBFG !) to enable a service model
- > 2<sup>nd</sup> Call: Focus on Service <u>Provisioning</u> for Sciences & Industry
- Strong <u>collaboration</u> with: Globus Project, EGEE, Deisa, CrossGrid, CoreGrid, GridCoord, GRIP, UniGrids, NextGrid, ...
- > Application and <u>user-driven</u>, not infrastructure-driven
- Focus on implementation and <u>production</u>, not grid research, in a multi-technology environment (Globus, Unicore, gLite, etc)
- > D-Grid is the <u>Core</u> of the German e-Science Initiative

# e-Science Applications

#### **UK e-Science:**



Particle physics, astronomy, chemistry, bioinformatics, healthcare, engineering, environment, pharmaceutical, petro-chemical, media and financial sectors

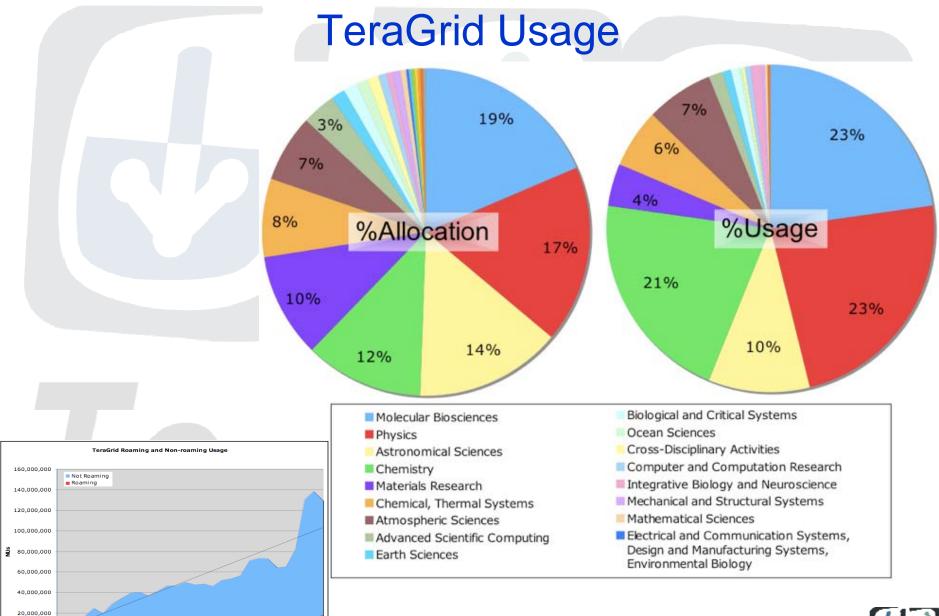
#### EGEE:

2 pilot applications (physics, life science) and applications from other 7 disciplines.

#### **ChinaGrid:**

Bioinformatics, image processing, computational fluid dynamics, remote education, and massive data processing

#### **NAREGI:**

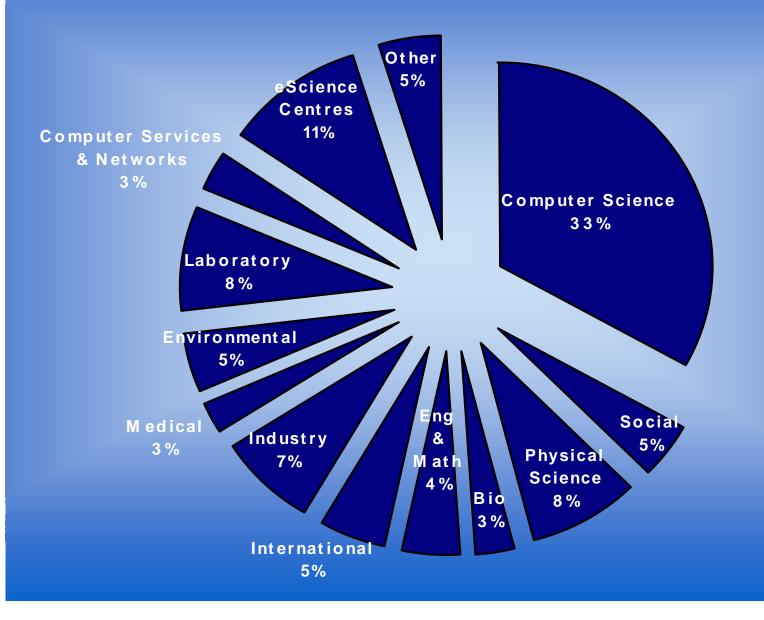

Nano-science applications

#### **TeraGrid**:

Physics (Lattice QCD calculations, Turbulence simulations, Stellar models), Molecular Bioscience (molecular dynamics), Chemistry, Atmospheric Sciences

#### **D-Grid-1**:

Astrophysics, high-energy physics, earth science, medicine, engineering, humanities






Charlie Catlett (cec@uchicago.edu)

Jan-04 Apr 0-04 Apr 0-04 May 0-04 May 0-04 May 0-04 May 0-04 Jan-05 Sep-04 Jan-05 Sep-04 May 0-05 Jun-05 May 0-05 May 0-05 May 0-05 May 0-05 May 0-05 May 0-05 Jun-05 May 0-05 May 0-05 May 0-05 May 0-05 May 0-05 Jun-05 May 0-05 May 0-05 Jun-05 May 0-05 May

### AHM 2004 Attendees The UK e-Science Community

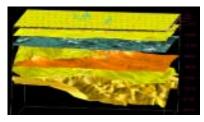




• More than 25 applications from 9 domains

Enabling Grids for E-sciencE

- Astrophysics
- Computational Chemistry
- Earth Sciences
- Financial Simulation
- Fusion


eeee


- Geophysics
- High Energy Physics
- Life Sciences
- Multimedia
- Material Sciences













Book of abstracts: http://doc.cern.ch//archive/electronic/egee/tr/egee-tr-2006-005.pdf

# **eGee**

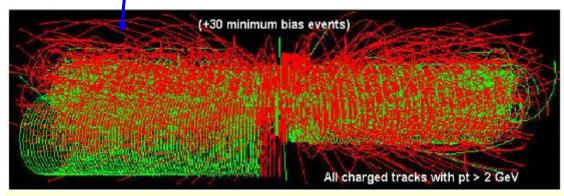
# **High Energy Physics**

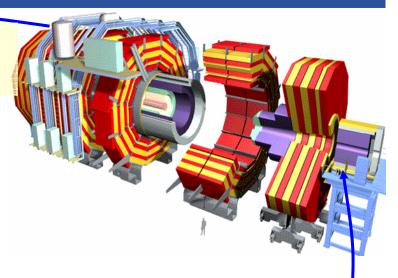
#### Enabling Grids for E-sciencE



#### Large Hadron Collider (LHC):

- One of the most powerful instruments ever built to investigate matter
- 4 Experiments: ALICE, ATLAS, CMS, LHCb
- 27 km circumference tunnel
- Due to start up in 2007





EGEE-II INFSO-RI-031688

# Large Hadron Collider data

Enabling Grids for E-sciencE


This is reduced by online computers that filter out a few hundred "good" events/sec.



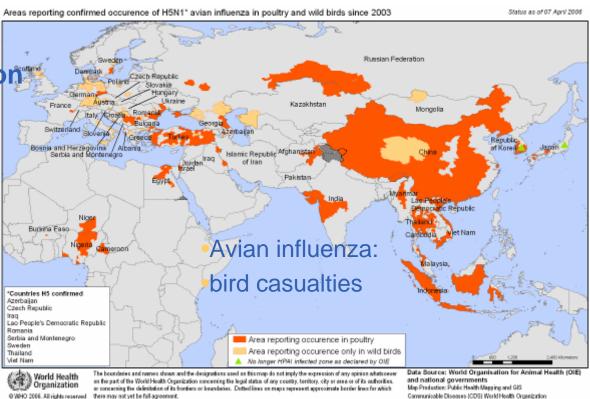


Which are recorded on disk and magnetic tape at 100-1,000 MegaBytes/sec

~15 PetaBytes per year for all four experiments



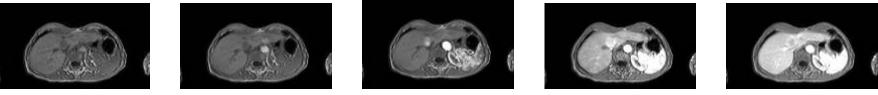
EGEE-II INFSO-RI-031688


**GGGGG** 

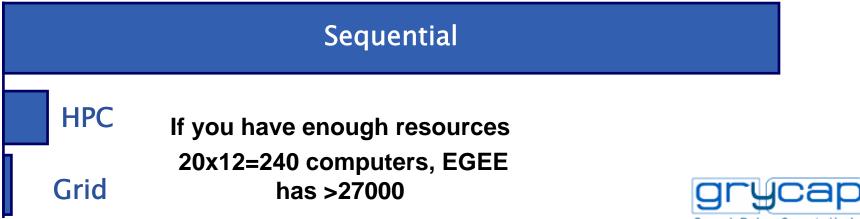


- Diseases such as HIV/AIDS, SRAS, Bird Flu etc. are a threat to public health due to world wide exchanges and circulation of persons
- Grids open new perspectives to in silico drug discovery
  - Reduced cost and adding an accelerating factor in the search for new drugs

## International collaboration is required for:


- Early detection
- Epidemiological watch
- Prevention
- Search for new drugs
- Search for vaccines




# **CGCC** Medical image processing: analysing tumours

Enabling Grids for E-sciencE

- Pharmacokinetics: contrast agent diffusion study
  - co-registration of a time series of volumetric medical images to analyse the evolution of the diffusion of contrast agents

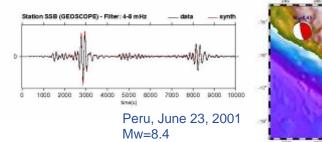


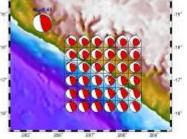
- Computational Costs
  - 20 Patients: 2623 hours (Co-registration + Parametric Image)
  - Using a 20-processor Computing Farm: 146 hours
  - Using the Grid: <20 hours</p>

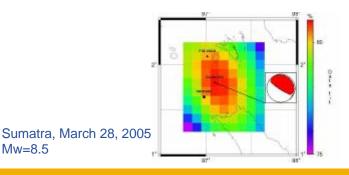


Grupo de Redes y Computación de Altas Prestaciones




# Example: Determining earthquake mechanisms

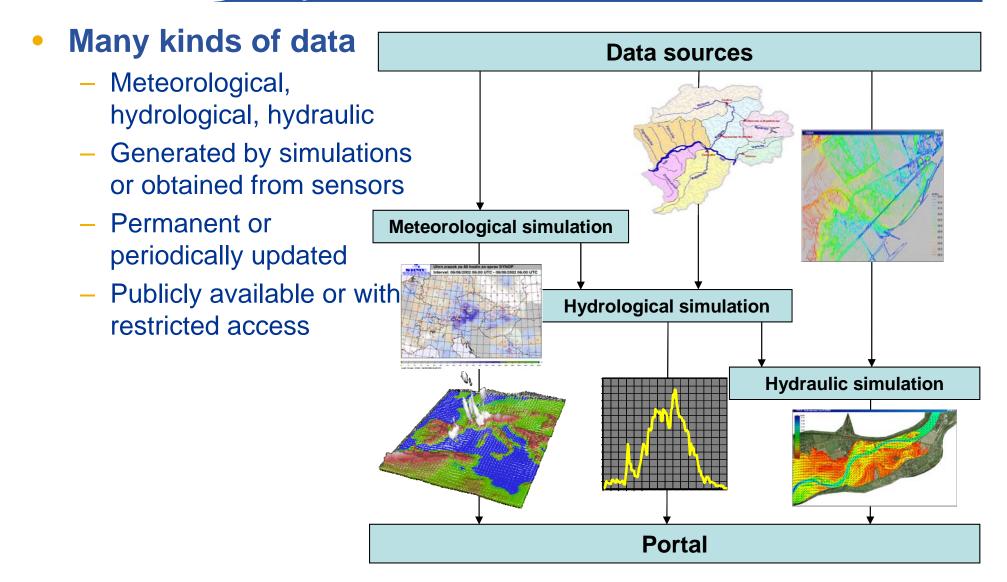

- Seismic software application determines epicentre, magnitude, mechanism
- Analysis of Indonesian earthquake (28 March 2005)
  - Seismic data within 12 hours after the earthquake
  - Analysis performed within 30 hours after earthquake occurred
    - 10 times faster on the Grid than on local computers
  - Results
    - Not an aftershock of December 2004 earthquake
    - Different location (different part of fault line further south)
    - Different mechanism





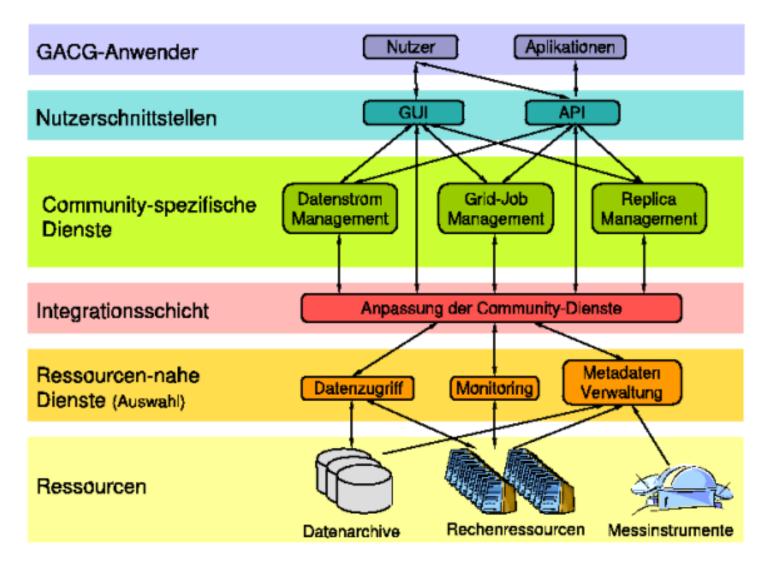

### → Rapid analysis of earthquakes important for relief efforts











#### Flood forecasting problem

Enabling Grids for E-sciencE



#### AstroGrid





#### C3 Grid: Collaborative Climate Community Data and Processing Grid

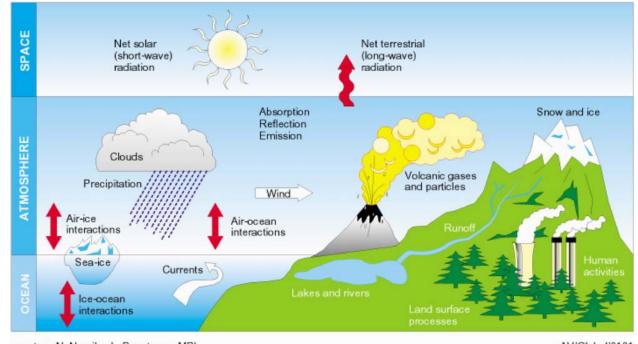
Climate research moves towards new levels of complexity:

Stepping from Climate (=Atmosphere+Ocean) to Earth System Modelling

Earth system model wishlist:

Higher spatial and temporal resolution

Quality: Improved subsystem models

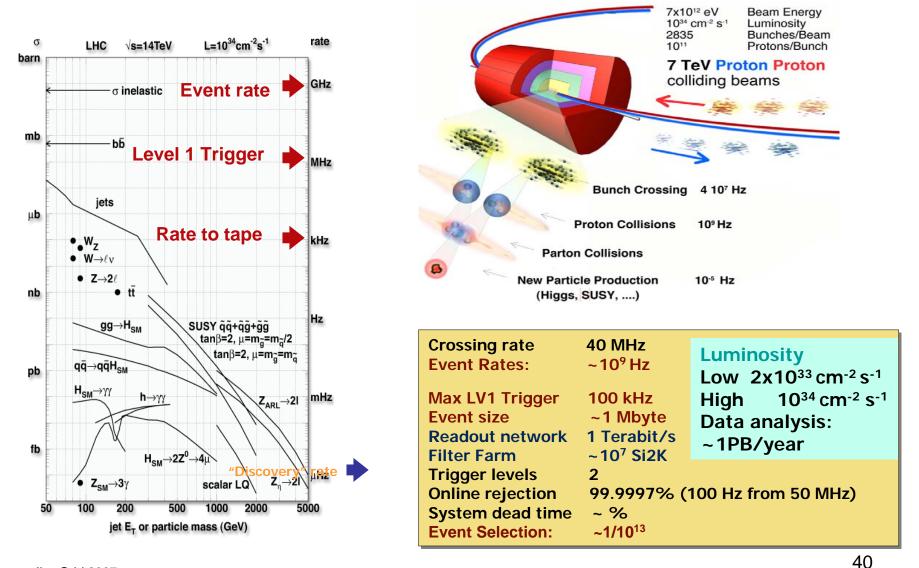

Atmospheric chemistry (ozone, sulfates,..)

Bio-geochemistry (Carbon cycle, ecosystem dynamics,..)

courtesy N. Noreiks, L. Bengtsson, MPI

AV/Global/0101

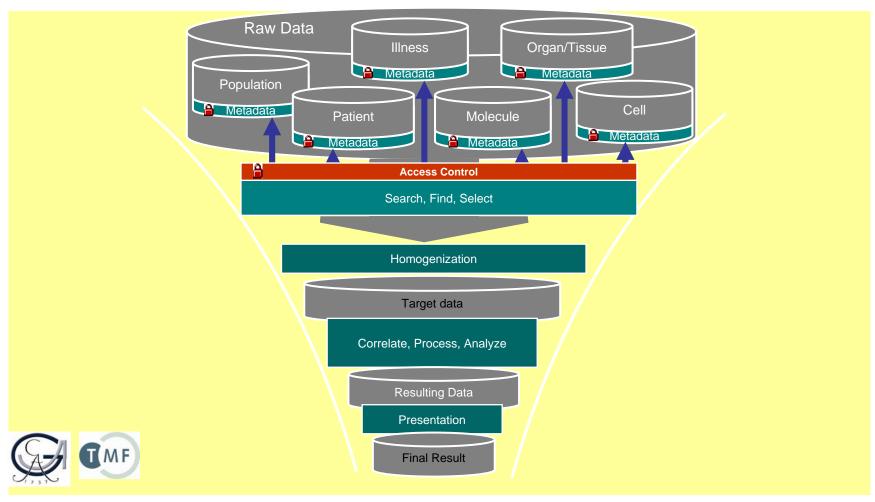
#### Increased Computational demand factor: O(1000 -10000)








# HEP-Grid: p-p collisions at LHC at CERN (from 2007 on)










#### MediGrid: Mapping of Characteristics, Features, Raw Data, etc



## TextGrid



Modular Platform for distributed cooperative scientific text processing for the humanities

Workbench for Publishing, Text Processing, Text Retrieval, Linking, and Workflow

#### Focus of TextGrid is on:

- Quantity: Full text instead excerpts, text and pictures
- Speed of reprography: stability of text, volatility of medium
- Precision: Maximum requirements on correctness
- Availability: international open standards

# **Challenges for Research and Industry**



- Sensitive data, sensitive applications (medical patient records)
- Different organizations get different benefits
- Accounting, who pays for what (sharing!)
- Security policies: consistent and enforced across the grid !
- Lack of standards prevent interoperability of components
- Current IT culture is not predisposed to sharing resources
- Not all applications are grid-ready or grid-enabled
- Open source is not equal open source (read the small print)
- SLAs based on open source (liability?)
- "Static" licensing model don't embrace grid
- Protection of intellectual property
- Legal issues (e.g. FDA, HIPAA, multi-country grids)

#### Lessons Learned and Recommendations



- Continuity: Grid infrastructure should be modified and improved in large cycles only: applications depend on infrastructure !
- Sustainability: Funding should be available after end of project, to guarantee services, support and continuous improvement.
- Interoperability: Use open-source software and standards especially in the infrastructure and application middleware layer.
- Collaboration: between infrastructure developers and the applications, to best utilize grid services and to avoid application silos.
- User-Friendliness: for easy adoption for new communities. Infrastructure group should offer installation, operation and support services.
- Grid Services: Centers of Excellence should specialize on specific services, e.g. integration of new communities, grid operation, utility services, training, support, etc.
- Participation of Industry: has to be industry-driven. Push from outside, even with govmnt funding, is not promising. Success comes only from real needs e.g. through already existing collaborations between research and industry.

## D-Grid-2, Start June 2007



- 'Horizontal' Service Grids: professional Service Providers for heterogeneous user groups in research and industry
- 'Vertical' Community Service Grids using <u>existing</u> D-Grid infrastructure and services, supported by Service Providers
- D-Grid extensions, based on a D-Grid 1 gap analysis
  - Tools for operating a professional grid service
  - Adding business layer on top of D-Grid infrastructure
  - Pilot service phase with <u>service providers</u> and 'customers'

<u>!! Reliable grid services require sustainable grid infrastructure !!</u>

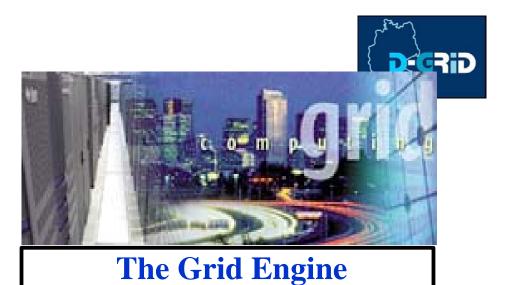
## **D-Grid-2** Projects



- Grid-based platform for VOs in the Construction industry
- Financial Business Grid: A service grid architecture for the financial service industry
- Grid-based collaboration among <u>Aerospace</u> research and industry
- Automotive: Cooperative product design and development in simulation and production data management
- Grid-based Enterprise Information Systems, integration & orchestration in commercial IT systems
- Geographical Data infrastructure for providing and processing data and simulation for catastrophes, noise, and navigation
- Distributed analysis + exploration of <u>Multimedia</u> archives
- Grid-based <u>IT services</u> for research and education
- Horizontal integration of resource and service Monitoring
- Grid support for small institutions and <u>SMEs</u>



#### Attract and Integrate New Communities


- ➢ First, send proposal to D-Grid-2/3/4 Call
- If approved, join D-Grid Welcome Workshops/Trainings (AHM)
- Download D-Grid software stack on your system and connect
- Your choice: Globus, gLite, Unicore
- Get support from our D-Grid Operation Centre (coming soon)
- Share (part of) your resources with D-Grid
- Port your application/s onto D-Grid infrastructure
- Develop/port/integrate app-specific middleware and tools
- Become a member of the D-Grid Steering Committee
- Develop your core community first, but then scale out
- ➤ What else ?

# Last but not least: D-Grid itself is Part of the International Grid Community











# Thank You !

Slides are available wgentzsch@d-grid.de

The Steam Engine