The IST Cluster: an integrated infrastructure for parallel applications in Physics and Engineering

Michael Marti

L. Gargaté, R. A. Fonseca L. L. Alves, J. P. S. Bizarro, P. Fernandes, J. P. M. Almeida, H. Pina, F. M. Silva, L. O. Silva

Instituto Superior Técnico (IST) Lisbon, Portugal http://istcluster3.ist.utl.pt

Michael Marti | Porto, May 12, 2008 | IBERGRID

Ζ

<u>с</u>

0

Outline

Hardware

• node and cluster architecture overview

- operational and cluster level software
- Benchmarks
- Administrative Model

authentication, administrative roles, queuing system

Schematic overview

Blade JS 21

- 2x dual core dual-core PowerPC 970
 2.5 GHz core clock
 32 KB (data) L1 cache
 64 KB (instructions) L1 cache
 2 MB L2 cache
 FSB 2 x 32bit @1,25 GHz
- 2x 400 MHz DDR2 memory channels

- 8 GB PC2-3200 CL3 ECC DDR2
- 73 GB SAS disk
- Output State of the state of
- expansion slot for 2nd disk or high performance interconnect

Cluster

- 5 blade centers with 14 blades each
- roughly double density compared to IHE servers
- total: 280 cores, 560 GB mem, 5.1 TB disk (local)

- communication: gigabit, passthrough
- management and storage: gigabit with 14 to 6 switches per bladecenter (2 level)
- kvm over ethernet
- frontend node: login, ldap, queuing system ...
- storage node: file systems, quotas, nfs gpfs ...
- web server: webpage, ganglia, moab portal ...
- storage DS4700: 8TB, FSC homes, scratch, pio

Operational software

0

compilers

- OS on local disk of nodes
- IBM network installation manager (NIM)
- IBM cluster system manager (CSM)

AIX 5L
 SUSE Linux Enterprise Server 10 (SLES)

- IBM xl compiler suite
 - xlc V8.0: c / c++,
 - xlfVI0.I:fortran 77 / 90 / 95
 - gnu compiler suite (4.2.3)
 - c/c++ java objc obj-c++

Cluster level software

Benchmarks

Network Benchmark (NetPipe)

Administrative model

administrative structure

- groups of users are non hierarchical and independent
- special administrative model to address this ecosystem
- a non centralized system administration is required

set of administrative tools

- queuing system
- group management
- software maintenance
- remaining minimal amount of centralized task

Two level authentication

administrator authenticates to his normal user account - only privilege: su - adm without password

administrator switches to adm account

adm account is privileged to do certain, restricted operations as root.

Administrative roles

	group administrator	software administrator
admin home	support files for group	actual files belonging to software package
available scripts	 create user delete user modify user check user quota move/delete users files manage users jobs 	 add user to software group remove user from software group kill users process (of that software)

Queuing system administration

cluster

creates / manages groups

- node hours
- group manager

groups

creates / manages projects

node hoursproject leaders

projects

assigns / manages project members

distribution of node hours available

users

selects project upon job submission

consumes node hours

fairness within project is assumed

moab (Cluster Resources)

- implementation of project entity
- interfaces: command line tools and files included from moab.cfg

administration level (IST)

- database for storage of entities (groups projects, credits etc)
- set of scripts (sudo) to modify objects in database

Output of IST Cluster

In production since March 2007

Codes running in production

55 **users** active, including users from 4 institutions outside IST

```
over 2.5 million cpu hours consumed
```

```
average system load
60-80%
```

Scientific Output

- 7 papers in international refereed journals
- 3 thesis
- 20 contributions to conferences and workshops
- 2 prizes awarded

5th Oscar Buneman Award

Luís Gargaté | luisgargate@ist.utl.pt

RNCA grid integration

Rede Nacional de Computação Avançada

http://www.rnca.org.pt/

Instituto de Engenharia Mecânica - Pólo FEUP

Instituto Superior Técnico

Laboratório Nacional de Engenharia Civil

Universidade do Minho

Moab based integration of the 4 RNCA nodes

- transparent view of the grid and local node
- integration of Idap domains
- user mapping
- resource mapping
- staging in / out in background
- possibility to integrate with GLOBUS

Medium sized cluster successfully deployed

- Iuster hardware
- system software
- preproduction since late January 2007
- production since March 2007

Integration of the RNCA grid in progress

Next steps

- increase number of cpus to 392
- High speed interconnect
- fully automatic dual boot for nodes, integrated with queuing system
- test of different grid middleware

Summary

