P-found GRID – A Distributed Repository for Protein Folding and Unfolding Simulations

Cândida G. Silva

Chemistry Department and

The Center for Neuroscience and Cell Biology

The Folding Problem

The Folding Problem

- Computational Approaches
- An example
- The current situation

The P-found GRID project

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

- Conversion of a linear sequence of amino acids into a functional tridimensional structure
- BSE, Alzheimer's or Parkinson's identified as Protein Folding Disorders
- What are the determinants of protein structure?
- How does a polypeptide fold to its native state?

The answer to these question may provide clues to understand diseases which appear to involve misfolding.

Computational Approaches

- The Folding Problem
- Computational Approaches
- An example
- The current situation
- The P-found GRID project
- The P-found GRID Architecture
- Challenges
- Acknowledgements
- Task Force

- Different simulation methods
 - Molecular dynamics (MD)
 - Monte Carlo based techniques
 - structure-based force fields
 - **♦**
- using simplified or all-atom protein representations
 - implicit or explicit solvent descriptions
 - in aqueous or organic solution, with or without co-solutes
- for different proteins
 - wild type vs. mutant
 - different structural classes or different topologies
 - **•** ...
- mimicking different experimental conditions
 - ◆ temperature
 - pressure
 - ♦ pH
 - ionic strength
 - **•** ..

An example

An example

• The current situation

The P-found GRID project

The P-found GRID Architecture

Challenges

Ackn	owle	edg	em	ents

Task Force

All-atom representation of the solvated L55P-TTR system used in the MD simulation

System description:

- Protein: 1912 atoms
- Water: 3*14137 atoms
- Na⁺ Cl⁻: 71 ions
- Total: 44394 atoms

- NAMD with CHARMM27 force field
- Simulated time: 8 nsec
- CPU time: ~12 days/nsec/CPU (@ pentium4 Linux cluster)

An example...


```
Acknowledgements
```

```
Task Force
```

- Computation run time: 4-6 weeks using 8-12 Pentium-4 CPUs
- **Binary file capturing all atoms:** \approx 4 GB
- Binary file capturing protein's atoms: \approx 180 MB

An example...

Acknowledgements

```
Task Force
```

- Computation run time: 4-6 weeks using 8-12 Pentium-4 CPUs
- Binary file capturing all atoms: \approx 4 GB
- Binary file capturing protein's atoms: \approx 180 MB

If multiple simulations in the same or different experimental conditions are required, the data volume increases proportionally.

The current situation

The Folding Problem

- Computational Approaches
- An example
- The current situation

The P-found GRID project

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

Chymotrypsin inhibitor 2

in Protein Sci. 2005, 14, 1242-1252

Transthyretin

in PNAS 2002, 99, 6719-6724

in OMICS 2004, 8, pp. 153-166

http://www.p-found.org

The current situation

The Folding Problem

Computational Approaches

• An example

The current situation

The P-found GRID project

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

http://www.p-found.org

The P-found GRID project

The P-found GRID project

ObjectivesThe data

• User profiles

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

Objectives

The Folding Problem

- The P-found GRID project
- ObjectivesThe data
- User profiles
- The P-found GRID Architecture
- Challenges
- Acknowledgements
- Task Force

1. Sharing of simulation data

- Raw simulation data
- Calculated molecular property data
- Provenance data
- Metadata
- 2. Analysis and data mining of molecular property data
- 3. Dynamic deployment and application of proprietary programs for calculating molecular properties and for analyzing molecular property data

The data

The Folding Problem

The P-found GRID project

Objectives

● The data

• User profiles

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

Simulation Raw Data

Derived molecular property data

Record the atomic positions of all atoms

in the protein along the trajectory

Represent different molecular properties

of the protein simulation

Record the parameters of the processes,

Provenance data

tools and other aspect which led to the

creation of the simulation raw data

Convey the content and structure of the

repository to users so that they can

efficiently navigate and use P-found.

3. Simulation Environment Information 4. Simulation Configuration Parameters

Simulation Parameters

2. Simulation General Information

1. Molecule Information

Metadata

User profiles

The Folding Problem

The P-found GRID project

Objectives

• The data

User profiles

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

Information users

Perform searches

Browse the data stored

Visualize graphical representations of the molecular properties data

User profiles

The Folding Problem

The P-found GRID project

Objectives

• The data

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

Information users

Perform searches

Browse the data stored

Visualize graphical representations of the molecular properties data

Data consumer users

Download molecular properties data

User profiles

The Folding Problem

The P-found GRID project

Objectives

User profiles

Challenges

Acknowledgements

Task Force

Information users

Perform searches

Browse the data stored

Visualize graphical representations of the molecular properties data

Data consumer users

Download molecular properties data

Data provider users

Upload simulation data

The Folding Problem

The P-found GRID Architecture

The Catalogue & Property DB

The Folding Problem

The P-found GRID project

The P-found GRID Architecture • The Catalogue & Property DB

- The Catalogue & Property DB Model
- Storage and Computing Elements
- The P-found GRID Web Portal
- The P-found GRID Application

Challenges

Acknowledgements

Task Force

Stores four different types of data

- Simulation files catalogue
- Molecular property data
- Simulation description data
- P-found GRID management information

Implemented in PostgreSQL

- Powerful, open source relational database system
- Strong reputation for reliability, data integrity, and correctness
- Supported within the Globus Toolkit Framework

The Catalogue & Property DB Model

Storage and Computing Elements

The Folding Problem

The P-found GRID project

- The P-found GRID Architecture
- The Catalogue & Property DB
- The Catalogue & Property DB Model
- Storage and Computing Elements
- The P-found GRID Web Portal
- The P-found GRID Application

Challenges

Acknowledgements

Task Force

Modular components of the P-found GRID system

Storage Element

- Stores simulations raw data
- Globus Toolkit 4.0 (GridFTP)

Computing Element

- Computation of molecular properties
- Geographically close to simulation data
- Globus Toolkit 4.0 (GRAM)
- VMD

The P-found GRID Web Portal

The Folding Problem

The P-found GRID project

- The P-found GRID Architecture
- The Catalogue & Property DB
- The Catalogue & Property DB Model
- Storage and Computing Elements
- The P-found GRID Web Portal
- The P-found GRID Application

Challenges

Acknowledgements

Task Force

- Provides a friendly interface between the end-user and the P-found GRID system
 - Coordinates the submission process of a new simulation
 - Input of simulation parameters
 - Upload of files
 - Standard moelcular properties calculation, job submission and gathering
 - Browse simulation and properties
 - Coordinate other properties generation
 - Allow data mining on properties and files
- Developed within the Gridsphere web portal framework

The P-found GRID Application

Challenges for the future

- Global accessibility to the data repository
- Development of new data mining tools for study and comparison of multiple simulations
- Prepare the system to accommodate simulation for methods other than molecular dynamics

Challenges for the future

The Folding Problem	
The P-found GRID project	
The P-found GRID Architecture	
Challenges	
Acknowledgements	
Task Force	

- Global accessibility to the data repository
- Development of new data mining tools for study and comparison of multiple simulations
- Prepare the system to accommodate simulation for methods other than molecular dynamics

Identification of high-level rules for discrimination among folding and unfolding processes in amyloidogenic and different structural classes of proteins

Acknowledgements

The Folding Problem

Visual Molecular Dynamics

John Stone

The P-found GRID project

The P-found GRID Architecture

Challenges

Acknowledgements

Task Force

Biological Collaborative Environment

Kirby Vandivort

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

SFRH/BD/16888/2004 (PhD scholarship) GRID/GRI/81809/2006 (Project I & D - Iniciativa Nacional GRID)

http://www.p-found.org

Task Force

University of Coimbra

Department of Chemistry and CNC

Rui M. M. Brito

Cândida G. Silva

Nuno Loureiro-Ferreira

Carlos J. V. Simões

Department of Physics and LCA

Pedro Vieira Alberto

Miguel Afonso Oliveira

Department of Informatics Engineering

Pedro Furtado

Ricardo Antunes

João Pedro Costa

University of Ulster

School of Biomedical Sciences

Werner Dubitzky

Vitaliy Ostropytskyy

Martin Swain

Olivier Riché

Daniel Berrar

Critical Software, S.A.

Nuno Cunha

Sérgio Cruz

João Brito

Sérgio Carvalho

University of Minho

Department of Informatics

Paulo J. Azevedo

João Luís Sobral

University of Porto

Faculty of Engineering

Rui Camacho