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Computational complexity of electromagnetic problems

Method of Moments

Solve the integral expressions from Maxwell equations
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where G(~r ,~r ′) denotes the free space Green’s function and is defined as:

G(~r ,~r ′) =
e−jk|~r−~r ′|

4π|~r −~r ′|

Method of moments
Expansion of the unknown on a set of geometrical basis functions:
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N
X

j=1

Ij~fj(~r
′)



logo

FMM Parallel FMM HEMCUVE ++ Finis Terrae HEMCUVE Challenge Conclusions

Computational complexity of electromagnetic problems

Method of Moments

Linear system of equations

ZI = V

Z is a N × N matrix (Impedance Matrix)
I is a N × 1 vector (unknown)
V is a N × 1 vector (excitation)

Computational complexity
1 Solving ZI = V with matrix factorization or matrix inversion

O(N2) in memory
O(N3) in CPU time

2 Solving ZI = V with iterative methods (e.g. GMRES)
O(N2) in memory
O(N2) in CPU time
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Computational complexity of electromagnetic problems

F-18 Radar Cross Section (RCS) analysis

Figure: F18 currents for a
nose plane wave incidence

Bistatic RCS at 1GHz with MoM
Memory: 4TB
CPU time:

SETUP: Several years
Solution

Factorization: Several years
Iterative solution: Several
days

Fast Multipole Methods

Setup and solution are obtained in
less than two hours requiring a few
GB of memory in a conventional PC.
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Computational complexity of electromagnetic problems

Fast Multipole Methods in Electromagnetics

Computational Complexity

Memory can be reduced to O(N3/2) or less

CPU time can be reduced to O(N3/2) for an iterative solver

SETUP time is from O(N) to O(N3/2)

Multilevel versions
Memory order O(N log N)

CPU time order O(N log N)

SETUP time order O(N log N)
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Fast Multipole Method Foundations

Grouping of interactions

Grouping of geometry

Geometry is clustered in a set of
separated groups

Typically, octree partition is
applied

Interactions between groups

Matrix Z is divided based on the
geometry clustering

Interactions between groups are
represented by blocks of Z
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Fast Multipole Method Foundations

Multipoles in ZIJ

Interaction between element i ∈ I and j ∈ J

Partial interaction between elements of clusters I and J (elements of ZIJ) is
decomposed into::

1 Aggregation

2 Translation

3 Disaggregation

Sequencing of steps

In FMM the previous steps are performed
sequentially

1 All the elements i of each group are
aggregated

2 The aggregation in each group is
translated to all the other groups

3 Finnally, the calculated contribution in
each group is disaggregated:
Contribution in element j
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Fast Multipole Method Foundations

Reduction in cost

Translation in the spectral domain

Translation in the spectral domain is a DIAGONAL operator.
Using also a spectral transform in the groups, matrix ZIJ can be
decomposed as:

ZIJ = AH
I TIJAJ

where
1 AJ is a full matrix that makes the aggregation of group J
2 TIJ is a diagonal matrix that makes the translation between

groups I and J
3 Disaggregation is the hermitic operator of the aggregation
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Fast Multipole Method Foundations

Minimal Cost – Group size

ZIJ = AH
I TIJAJ

Aggregation: A Full matrix

Large Groups Full large matrices: O(N2)

Small Groups Small matrices: O(N)

Translation: T Diagonal matrix

Large Groups Few diagonal matrices: O(N)

Small Groups A lot of translations: O(N2)

Tradeoff

If number of groups: O(
√

N). Then, Memory and
CPU become O(N3/2).
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Fast Multipole Method Foundations

The Multilevel Fast Multipole Method

Recursive implementation of Fast Multipole Method

Two new operators: Vertical
translation between levels

1 Interpolation
2 Anterpolation

Computational Cost

Memory and CPU costs are O(N log N)
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Drawbacks

Several drawbacks of the Multilevel
implementations

Scalability

Scalability is limited by

Heavy load unbalance

Amdahl’s Law

Memory limitations

Several structures are need to be common to all processors
Memory footprint

Translation operators in low levels
Interpolation/Anterpolation operators in low levels
...
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Drawbacks

Solutions to the different drawbacks

Improvements

Schemes to improve the load balance
In-core calculation of some structures

Increasing serial fraction: Reduction of scalability
Load unbalance

Number of processors

In a distributed system Multilevel Fast Multipole Methods in
electromagnetics are limited.

A maximum of 8, 16 or 32 processors

Low efficiencies are achieved
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Challenges and records

Challenges in Computational Electromagnetics

RCS of a conducting sphere

W.C. Chew, 2003

Diam 100λ

Unk 10 millions (10, 002, 828)

Gurel, 2007

Diam 192λ

Unk 30 millions (33, 791, 232)

Gurel, 2007 Late

Diam 210λ

Unk 40 millions (41, 883, 648)

Landesa et al, 2008

Diam 200λ

Unk 30 millions (32, 411, 106)

[??], 2008,2009

Diam > 350λ

Unk > 100 millions
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Limits of the Fast Multipole Methods in electromagnetics

Ergul Multilevel FMM performance
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HEMCUVE ++ code

HEMCUVE ++ foundations

Electromagnetic methods implemented

Single Level Fast Multipole Method

Multilevel Fast Multipole Method

Parallel implementations

Shared Memory OpenMP implementation

Distributed Memory MPI implementation

Mixed Memory Hybrid MPI/OpenMP implementation

Language

HEMCUVE ++ is implemented in C++
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HEMCUVE ++ code

Parallel performance of HEMCUVE ++

Implementations

MPI Very high efficiency

OpenMP High efficiency

MPI/OpenMP High efficiency

Multilevel FMM

Parallel efficiency is similar to other implementations

Maximum scalability: 16 to 32 processes

Single level FMM

Specific parallel implementation

Parallel efficiency is very high

Maximum scalability: 512 to 1024 processes, assured
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Finis Terrae Architecture

Finis Terrae Architecture

142 cc-NUMA Integrity rx7640 nodes

8–dual core Intanium-2 Montvale processors

128GB memory

Infiniband network

Linux SLES 10

2 additional Superdome Integrity nodes

memory/CPU ratio

8GB/CPU minimum

Finis Terrae

More than 2500 cores and more than 19TB of memory
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Finis Terrae Challenges

Finis Terrae Challenges

Challenges

Before 1 April 2008 (release of Finis Terrae), CESGA planned 4
computational challenges

High complex problems

Finis Terrae Time-to-solution

Challenges date

Challenges have been scheduled in one week in one week of:
1 From February 11 to February 17
2 From February 18 to February 24
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Finis Terrae Challenges

HEMCUVE Challenge

HEMCUVE Challenge

Electromagnetics Challenge

Evaluation of the capabilities of Finis Terrae to beat the
WORLD RECORD

Very high efficiency: For using hundreds of GB and
hundreds of processes

Intensive use of resources: Memory, network and CPU

Objectives
1 Measurement of the performance of HEMCUVE code
2 Analysis of an electromagnetic problem with tens of

millions of unknowns
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HEMCUVE foundations for the record

Selection of the electromagnetics method

Multilevel Fast Multipole Method

Poor scalability

Load unbalance

Great footprint in very large problems and with many
processors
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HEMCUVE foundations for the record

Selection of the electromagnetics method

Single Level Fast Multipole Method

Good scalability

Medium footprint

Low dependence of memory footprint with the number of processors

Specific parallelization of HEMCUVE:

Smart management of communications
No explicit synchronization between processes
Fine tuning of the code: Superscalability with 8 processes

Summarizing

Single Level FMM is able to take advantage of large amounts of
resources

Multilevel FMM is not
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Problems

Challenge week (From February 11 to February 15)

Monday Tuesday Wednesday

Thursday Friday
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Problems

Main problems < 1 >

NaN
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Problems

Main problems < 2 >

Load unbalance with large number of processors

Poor performance of the run time for non main operations

Bug in the distribution of cells when a large number of
processors are involved

Very easy solution
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Performance of HEMCUVE

More than 7 millions of unknowns

RCS of a Sphere

89.8λ diameter

7.6 millions of unknowns
(7,651,221)

Multiple runs from 8 to 1024
processes



logo

FMM Parallel FMM HEMCUVE ++ Finis Terrae HEMCUVE Challenge Conclusions

Performance of HEMCUVE

Scalability. Matrix Vector Product time
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Performance of HEMCUVE

Scalability. Setup time
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Tens of millions of unknowns

More than 30 millions of unknowns

RCS of a Sphere

200λ diameter

32 millions of unknowns
(32,411,106)

Multiple runs from 8 to 1024
processes

Technical data
512 process

7TB of total memory

Setup time: 4h35m

Time for each MVP: 6m6s

TOTAL Time: 15h10m
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Tens of millions of unknowns

Results: Bistatic RCS of the Sphere
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Tens of millions of unknowns

Results: Currents the Sphere



logo

FMM Parallel FMM HEMCUVE ++ Finis Terrae HEMCUVE Challenge Conclusions

Outline
1 FMM

Computational complexity of electromagnetic problems
Fast Multipole Method Foundations

2 Parallel FMM
Drawbacks
Challenges and records
Limits of the Fast Multipole Methods in electromagnetics

3 HEMCUVE ++
HEMCUVE ++ code

4 Finis Terrae
Finis Terrae Architecture
Finis Terrae Challenges

5 HEMCUVE Challenge
HEMCUVE foundations for the record
Problems
Performance of HEMCUVE
Tens of millions of unknowns

6 Conclusions



logo

FMM Parallel FMM HEMCUVE ++ Finis Terrae HEMCUVE Challenge Conclusions

Conclusions

Near World Record in Electromagnetics

Only one week in Finis Terrae. Best Time-to-Solution than
any other record

Memory/CPU ratio of Finis Terrae: Solution to problems
irresolvable by other supercomputers with more CPU’s

Scalability: Relegated single Level FMM is very attractive
for high performance scientific challenges.

Is possible more than a hundred of millions?

Ergul: Objective for the next years

Extremadura, Vigo and CESGA: Several improvements to
achieve a great record in 2008 or 2009.
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