

Shared Visualization

Using Centralized Resources for Remote 3D Visualization on Thin Clients

> Torben Kling-Petersen, PhD Simon See, PhD Darrell Commander Linda Fellingham, PhD

Advanced Computing Solutions & Advanced Visualization and Graphics Sun Microsystems

Sun's HPC end-to-end solution

Sun's 25-Year Visualization Heritage

Mechanical Design and Analysis

Medical Imaging

Geosciences and Exploration

Aerospace and Defense

Bio/Nanotechnology

Scientific Research

Understanding Huge Data Sets Requires Interactive Visualization

But visualization is hardware intensive

- Big data clogs networks
- Requires lots of memory
- Requires lots of CPU power
- Graphics accelerators need lots of power and cooling
- Workstations inadequate?
- And who wants to work near the heat and noise?

Huge Data Overwhelms the Pipeline(s)

Multi GPU graphics helps but now CPUs, memory and I/O becomes the limiting factor

Kling-Petersen et al 2008

5

We're Reaching a Transition Point

Data sizes are increasing exponentially, while network bandwidth now meets visual acuity requirements, allowing visual applications and services to be consolidated in the datacenter

Sun's Motto

The Network SOLK The Computer computer

Sun Shared Visualization Software

Secure access to 3D applications on a central resource

- Transparently accessed from a variety of clients
- More efficient utilization of resources
- Easier administration and lower TCO
- Access anytime from anywhere on any device

Definition – Thin Clients

The Sun Ray[™] family (SR270, SR2FS and SR2)

Kling-Petersen et al 2008

IberGrid '08

Sun Shared Visualization Software

- Application transparent no need to modify code
 - > Plugs into any Solaris/Linux OpenGL application
- High performance
 - > Redirects 3D rendering into accelerated pixel buffers on the server's graphics hardware
- Increased efficiency and security
 - > Sends only 2D screen images to client with optimized compression
- Easy access and management
 - > Central graphics resources managed using Sun Grid Engine software
- Community-driven innovation
 - > Sun sponsored VirtualGL Open Source project

Software Details

Sun Shared Visualization software

> Server:

- Sun UltraSPARC servers and workstations with Sun graphics accelerators
- Sun x64 servers and workstations with NVIDIA Quadro FX or Quadro Plex VCS graphics solutions
- >OS: Solaris and Linux
- > Client: Solaris, Linux, Windows, Mac OS X and Sun Ray (thin clients)
- Open Source software Sun sponsored
 - > VirtualGL remote access via any client over standard IP networks
 - > TurboVNC allows X apps designed to run and display on same system to run on one system and display on another and enables collaboration
 - Sun Grid Engine extensions provide graphics resource management and advance reservation system

Standard Local Workstation Graphics

Standard Remote Graphics

Remote Graphics using VirtualGL

VirtualGL Sun Ray Plug-In

Sun Grid Engine (with Shared Viz Enhancements)

• Purpose

> Allows users to run hardware-accelerated OpenGL applications on a server with appropriate and available CPU, memory, and graphics resources.

Components

- Standard SGE provides management and allocation of regular compute resources (CPUs, memory, OS, software licenses).
- > Enhancements allow SGE to manage of graphics resources
 - > provides "user-transparent" connection between the allocated graphics device and the user's display on the remote client.
- > Advance Reservation system allows resources to be reserved for a specific time in the future.

Open source software developed by Sun

SGE & Sun Shared Visualization Software

Performance considerations

- Quality settings
- Network Bandwidth
- Network latency
- Interactivity
- Thin Client performance

VGL Settings	Accept. Performance (10 fps)	Full Performance (20+ fps)
HQ (no subsp quality=95)	20 Mbps	40 Mbps
MQ (2Xsubsp quality=80)	10 Mbps	20 Mbps
LQ (4X subsp C Pe 30 25 20 30 25 20 15 10 5	5 Mhne rformance of VGL at different netw	10 Mhne ork latencies
0 ms 5	5 ms 10 ms 20 ms	50 ms 100 ms

Conclusions

Thin clients are valid for advanced 3D visualization

Price/Performance

- Fewer software licenses
- Lower support costs
- Resource sharing
- Environmental issues
- Instant mobility
- Remote access (incl. wide area)
- Security and reliability
- Central administration

Thank You!

Sun Microsystems kling@sun.com

